Background: Nutrients affect small intestinal protein mass and metabolism, but studies on the effect of nutrients on small intestinal protein degradation are very limited due to a lack of a proper method. The objectives of this study were to establish a method to directly estimate protein degradation in isolated enterocytes from rats and to test the effect of energy substrates on protein degradation.

Methods: Male Sprague-Dawley rats (150-200 g, n>or=8 per treatment) were used. Cell viability, tyrosine release as an indicator of protein degradation, and the effect of osmolarity, 50 mmol/L glucose, 20 mmol/L beta-hydroxybutyrate, 4.7 mmol/L butyrate, and 30 mmol/L glutamine on protein degradation were measured.

Results: The average viability of enterocytes at time 30 minutes was 85.8% (range, 81%-94%). Tyrosine release was linear over the course of experiments, indicating constant protein degradation (R2=0.9943; p<.05). Osmolarity, glucose, and glutamine had no effect on protein degradation in isolated enterocytes. Beta-hydroxybutyrate significantly decreased it (-16%; p<.05), whereas butyrate slightly increased it (+5%; p<.05).

Conclusions: A high viability and constant protein degradation indicate a successful establishment of a method to estimate protein degradation in isolated small intestinal enterocytes from rats. The large effect of beta-hydroxybutyrate suggests a potential positive role for ketone bodies to limit the loss of small intestinal protein mass by decreasing protein degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0148607106030006497DOI Listing

Publication Analysis

Top Keywords

protein degradation
24
small intestinal
12
energy substrates
8
protein
8
substrates protein
8
degradation isolated
8
enterocytes rats
8
intestinal protein
8
tyrosine release
8
degradation
6

Similar Publications

Quantitative DIA-based proteomics unveils ribosomal biogenesis pathways associated with increased final size in three-year-old Chinese mitten crab (Eriocheir sinensis).

BMC Genomics

January 2025

Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China.

Background: Temperature is a key determinant of ectotherms distribution and growth. During the Eriocheir sinensis breeding process, it was observed that crabs in high latitudes and altitude areas with low temperatures undergo diapause, they would overwinter and continue to grow into three-year-old individuals, whose final body size is significantly larger than the normal two-year-old crabs. The hepatopancreas is responsible for maintaining the nutritional balance and energy required for the crab survival.

View Article and Find Full Text PDF

The important role of the histone acetyltransferases p300/CBP in cancer and the promising anticancer effects of p300/CBP inhibitors.

Cell Biol Toxicol

January 2025

Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.

Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics.

View Article and Find Full Text PDF

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability.

View Article and Find Full Text PDF

Regulation of enzymatic lipid peroxidation in osteoblasts protects against postmenopausal osteoporosis.

Nat Commun

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.

Oxidative stress plays a critical role in postmenopausal osteoporosis, yet its impact on osteoblasts remains underexplored, limiting therapeutic advances. Our study identifies phospholipid peroxidation in osteoblasts as a key feature of postmenopausal osteoporosis. Estrogen regulates the transcription of glutathione peroxidase 4 (GPX4), an enzyme crucial for reducing phospholipid peroxides in osteoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!