During kidney development, Pax2 and Pax8 are expressed very early in the mammalian nephric duct and both precede the expression of receptor tyrosine kinase, c-Ret. However, in Pax2-/- mutant mice, expression of c-Ret is lost after embryonic day 10.5. As the Ret/Gdnf pathway is necessary for renal development and there is a temporal and spatial relationship of Pax2 and c-Ret expression in the developing genito-urinary system, we postulate that Pax2 is necessary for c-Ret expression in the developing kidney. In vitro, Pax2 protein is capable of physically interacting with a c-RET promoter, and both Pax2 and Pax8 can activate the expression of a reporter gene driven by the c-RET promoter. Compound heterozygous null mice (Pax2+/-: Ret+/-) display an increased incidence of unilateral and bilateral renal agenesis, and smaller kidneys with fewer nephrons. Furthermore, the expression of Gdnf is reduced 2-3-fold, whereas c-Ret expression is reduced 9-47-fold in Pax2 heterozygous embryonic kidneys as detected by real-time quantitative RT (QRT)-PCR. The data demonstrate that Pax2 plays an integral role in the initiation and maintenance of the Ret/Gdnf pathway by not only activating the ligand of the pathway, but by also enhancing the expression of the pathway receptor Ret. The effects of reduced Pax2 gene dosage are thus amplified resulting in a haploinsufficient phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddl418 | DOI Listing |
Development
December 2024
Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
Growth arrest specific 1 (GAS1) is a key regulator of mammalian embryogenesis, best known for its role in hedgehog (HH) signaling, but with additional described roles in the FGF, RET, and NOTCH pathways. Previous work indicated a later role for GAS1 in kidney development through FGF pathway modulation. Here, we demonstrate that GAS1 is essential for both mesonephrogenesis and metanephrogenesis - most notably, Gas1 deletion in mice results in renal agenesis in a genetic background-dependent fashion.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Polish Lung Cancer Study Group, 01-138 Warsaw, Poland.
Elife
September 2024
School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Brain Res Bull
October 2024
Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
Objective: The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions.
Methods: Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses.
Adv Protein Chem Struct Biol
July 2024
Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!