Amyloid aggregates are associated with a number of mammalian neurodegenerative diseases. Infectious aggregates of the mammalian prion protein PrP(sc) are hallmarks of transmissible spongiform encephalopathies in humans and cattle (Griffith, 1967; Legname et al., 2004; Prusiner, 1982; Silveira et al., 2004). Likewise, SDS-stable aggregates and low-n oligomers of the Abeta peptide (Selkoe et al., 1982; Walsh et al., 2002) cause toxic effects associated with Alzheimer's disease (Selkoe, 2004). The discovery of prions in lower eukaryotes, for example, yeast prions [PSI(+)], [PIN(+)], and [URE3] suggested that prion phenomena may represent a fundamental process that is widespread among living organisms (Chernoff, 2004; Uptain and Lindquist, 2002; Wickner, 1994; Wickner et al., 2004). These protein structures are more stable than other cellular protein complexes, which generally dissolve in SDS at room temperature. In contrast, the prion polymers withstand these conditions, while losing their association with their non-prion partners. These bulky protein particles cannot be analyzed in polyacrylamide gels, because their pores are too small to allow the passage and acceptable resolution of the large complexes. This problem was first circumvented by Kryndushkin et al. (2003), who used Western blots of protein complexes separated on agarose gels to analyze the sizes of SDS-resistant protein complexes associated with the yeast prion [PSI(+)]. Further studies have used this approach to characterize [PSI(+)] (Allen et al., 2005; Bagriantsev and Liebman, 2004; Salnikova et al., 2005), and another yeast prion [PIN(+)] (Bagriantsev and Liebman, 2004). In this chapter, we use this method to assay amyloid aggregates of recombinant proteins Sup35NM and Abeta42 and present protocols for Western blot analysis of high molecular weight (>5 MDa) amyloid aggregates resolved in agarose gels. The technique is suitable for the analysis of any large proteins or SDS-stable high molecular weight complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0076-6879(06)12003-0 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland.
Alzheimer's disease, the most common form of dementia, is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to the loss of neurons and a decline in a person's memory and cognitive function. As a multifactorial disease, Alzheimer's involves multiple pathogenic mechanisms, making its treatment particularly challenging. Current drugs approved for the treatment of Alzheimer's disease only alleviate symptoms but cannot stop the progression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinic of Nuclear Medicine Central University Emergency Military Hospital "Dr Carol Davila", 10825 Bucharest, Romania.
Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA.
The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined.
View Article and Find Full Text PDFJ Adv Res
January 2025
Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China. Electronic address:
Background: Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca) signaling pathway in the progression of AD, indicating a complex interplay between Ca dysregulation and various pathological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!