The rates of degradation of cyanuric acid, a key intermediate in a metabolic pathway of s-triazine herbicides, were measured for Pseudomonas sp. NRRL B-12227. The rate of degradation was affected by the rate of cyanuric acid transport through cell membranes and the activity of cyanuric acid amidohydrolase inside the cells. At low concentrations of cyanuric acid, the acclimation of cells to cyanuric acid and/or added nutrients effectively enhanced the degradation rate. The strain was also applied to bioremediation using a Bioremediation with Self-Immobilization System (BSIS), in which Pseudomonas sp. NRRL B-12227 cells were co-immobilized with Bacillus subtilis, the latter of which secretes a viscous polymer, in a shallow layer of soil packed in a column. More than 70% of the Pseudomonas sp. NRRL B-12227 cells were co-immobilized with the B. subtilis in a 7.5 cm layer of the packed soil by self-aggregation. More than 60% of the 1 mM cyanuric acid supplied to the packed soil was degraded in this layer during a 72 h period.

Download full-text PDF

Source
http://dx.doi.org/10.1263/jbb.102.206DOI Listing

Publication Analysis

Top Keywords

cyanuric acid
28
pseudomonas nrrl
16
nrrl b-12227
16
degradation cyanuric
8
bioremediation self-immobilization
8
self-immobilization system
8
degradation rate
8
b-12227 cells
8
cells co-immobilized
8
packed soil
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!