Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This review considers the design, synthesis, and mechanistic assessment of peptide-based fibrillogenesis inhibitors, mainly focusing on beta-amyloid, but generalizable to other aggregating proteins and peptides. In spite of revision of the "amyloid hypothesis," the investigation and development of fibrillogenesis inhibitors remain important scientific and therapeutic goals for at least three reasons. First, it is still premature to dismiss fibrils altogether as sources of cytotoxicity. Second, a "fibrillogenesis inhibitor" is typically identified experimentally as such, but these compounds may also bind to intermediates in the fibrillogenesis pathway and have hard-to-predict consequences, including improved clearance of more cytotoxic soluble oligomers. Third, inhibitors are valuable structural probes, as the entire field of enzymology attests. Screening procedures for selection of random inhibitory sequences are briefly considered, but the bulk of the review concentrates on rationally designed fibrillogenesis inhibitors. Among these are internal segments of fibril-forming peptides, amino acid substitutions and side chain modifications of fibrillogenic domains, insertion of prolines into or adjacent to fibrillogenic domains, modification of peptide termini, modification of peptide backbone atoms (including N-methylation), peptide cyclization, use of D-amino acids in fibrillogenic domains, and nonpeptidic beta-sheet mimics. Finally, we consider methods of assaying fibrillogenesis inhibitors, including pitfalls in these assays. We consider binding of inhibitor peptides to their targets, but because this is a specific application of the more general and much larger problem of assessing protein-protein interactions, this topic is covered only briefly. Finally, we consider potential applications of inhibitor peptides to therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0076-6879(06)13015-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!