Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is well known that the efficiency of intestinal active calcium transport is regulated by the Vitamin D receptor pathway and Vitamin D analogs seem to exhibit differential effects on intestinal active calcium transport. To investigate the molecular basis for the difference among Vitamin D analogs, we tested three Vitamin D analogs: 1,25-dihydroxyvitamin D(3), 19-nor-1,25-dihydroxyvitamin D(2), and 1alpha-hydroxyvitamin D(2) ex vivo and in vitro. In 5/6 nephrectomized rat intestinal active calcium transport, 19-nor-1,25-dihydroxyvitamin D(2) did not show a significant effects on intestinal active calcium transport at all the concentrations tested, while 1alpha-hydroxyvitamin D(2) at 0.33 and 0.67 microg/kg and 1,25-dihydroxyvitamin D(3) at 1microg/kg significantly stimulated calcium transport. In Caco-2 cells, 19-nor-1,25-dihydroxyvitamin D(2) did not show a significant effect on calcium transport, while 1,25-dihydroxyvitamin D(3) and 1,25-dihydroxyvitamin D(2) (the active form of 1alpha-hydroxyvitamin D(2)) stimulated calcium transport by 934 and 501% at 0.1microM, respectively. 1,25-Dihydroxyvitamin D(2) potently induced the expression of CALB3 and TRPV6 mRNA with an EC(50) of 0.3 and 1.0nM, whereas 19-nor-1,25-dihydroxyvitamin D(2) was 10-fold less potent than 1,25-dihydroxyvitamin D(2) in inducing CALB3 and TRPV6 mRNA. The three Vitamin D analogs had no significant effect on the expression of PMCA1 mRNA. These Vitamin D analogs did not change the expression of Vitamin D receptor (VDR) up to 10nM, but stimulated CYP24A1 expression in a dose-dependent manner with the potency in the order of 1,25-dihydroxyvitamin D(3)>1,25-dihydroxyvitamin D(2)=19-nor-1,25-dihydroxyvitamin D(2). These results suggest that the differential effect of Vitamin D analogs on stimulating intestinal and Caco-2 calcium transport may be in part due to its different effect on stimulating CALB3 and TRPV6 mRNA expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2006.07.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!