Selected mutagenesis of acetylcholinesterase (AChE; EC 3.1.1.7) may enable one to develop more effective scavenging agents in which AChE itself, in combination with an oxime, will complete a catalytic cycle of hydrolysis of the organophosphate by rapid conjugation followed by enhanced nucleophile-mediated hydrolysis of the phosphonyl enzyme conjugate. Through enlargement of the active site gorge of mouse AChE by mutations Y337A, F295L and F297I, we studied continuous enzymatic degradation of S(P)-cycloheptyl methylphosphonyl thiocholine (S(P)-CHMPTCh) in the presence of HI-6. Continuous hydrolysis of S(P)-CHMPTCh was measured spectrophotometrically from thiocholine released during hydrolysis with DTNB as the thiol reagent. The rates of hydrolysis expressed as moles of formed thiocholine per mole of enzyme per minute were 3.3, 0.69, 0.34 and 0.15min(-1) for F295L/Y337A, Y337A, F297I/Y337A and AChE wild-type, respectively. These rates did not depend on the initial S(P)-CHMPTCh concentration range employed. However, by increasing HI-6 concentrations, the rates approached a limiting value, indicating that oxime reactivation is the rate-limiting step in S(P)-CHMPTCh hydrolysis. Our results confirm that a mixture of a mutant enzyme and an oxime might serve as an in vivo catalytic scavenger of organophosphates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2006.08.032 | DOI Listing |
Plant Physiol
January 2025
Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany.
The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase Ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs).
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States.
The antibacterial agent Bio-AMS is metabolized in vivo through hydrolysis of the central acyl-sulfamide linker leading to high clearance and release of a moderately cytotoxic metabolite . Herein, we disclose analogues designed to prevent the metabolism of the central acyl-sulfamide moiety through steric hindrance or attenuation of the acyl-sulfamide electrophilicity. was identified as a metabolically stable analogue with a single-digit nanomolar dissociation constant for biotin protein ligase (BPL) and minimum inhibitory concentrations (MICs) against and ranging from 0.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON, M5G 1G6, Canada.
Dental resin-based restorative (RBR) materials represent the most ubiquitous biomaterials utilized globally. Methacrylate (MA)-ester based monomers - present in RBRs since the 1960s - experience significantly elevated rates of failure compared to previously used silver/amalgam fillings attributed to their hydrolysis reported in both simulated and in vivo environments. There is currently no alternative RBR chemistry that matches the functional and clinical workflow considerations of MA-RBRs while addressing their limited-service lives.
View Article and Find Full Text PDFGland Surg
December 2024
Department of Gynecology, Wenzhou People's Hospital, Wenzhou, China.
Background: Infertility is a special reproductive health defect. For women, congenital uterine malformations, extensive adhesions in the uterine cavity, and hysterectomy are associated with infertility. Uterine transplantation is technically feasible, but its clinical application and development are limited by donor shortages and immune rejection.
View Article and Find Full Text PDFNat Geosci
January 2025
School of Earth and Environment, University of Leeds, Leeds, UK.
Controls on organic carbon preservation in marine sediments remain controversial but crucial for understanding past and future climate dynamics. Here we develop a conceptual-mathematical model to determine the key processes for the preservation of organic carbon. The model considers the major processes involved in the breakdown of organic carbon, including dissolved organic carbon hydrolysis, mixing, remineralization, mineral sorption and molecular transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!