Calcium homeostasis in trigeminal ganglion cell bodies.

Cell Calcium

The Neuroscience Program, University of Maryland, School of Medicine, Baltimore, MD 21201-1559, United States.

Published: April 2007

AI Article Synopsis

  • Ca2+ is crucial for various cellular processes in primary sensory afferent neurons, particularly affecting receptor activity, neurotransmitter release, and gene regulation.
  • Research on trigeminal ganglion neurons (TGNs) shows that Ca2+ stores significantly influence Ca2+ transients, as evidenced by the effects of pharmacological inhibitors like CPA and CCCP.
  • Inhibiting the sodium-calcium exchanger (NCX) and altering pH conditions revealed that NCX does not significantly impact Ca2+ removal, while the plasma membrane calcium-ATPase (PMCA) plays a role in Ca2+ extrusion in TGNs.

Article Abstract

In primary sensory afferent neurons, Ca2+ plays a vital role in the regulation of cellular processes including receptor and synaptic plasticity, neurotransmitter and trophic factor release and gene regulation. Current understanding of the mechanisms underlying Ca2+ homeostasis of primary sensory afferent neurons is mostly derived from studies on dorsal root ganglia and nodose ganglia neuron cell bodies. Little is known about Ca2+ homeostasis in trigeminal ganglion neurons (TGNs). To determine what cellular processes contribute to electrically-evoked Ca2+ transients in TGNs, we probed Ca2+ regulatory mechanisms in TGN cell bodies from the ophthalmic division with a panel of pharmacological reagents. Ca2+ transients were evoked in fura-2 loaded TGNs by depolarizing the plasma membrane with brief (500 ms) puffs of 50 mM KCl. Cyclopiazonic acid (CPA; 5 microM), an inhibitor of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), significantly decreased the peak amplitude, and slowed the decay, of the KCl-evoked Ca2+ transients in TGNs. The mitochondrial protonophore, carbonyl cyanide 3-chloro-phenylhydrazone (CCCP; 5 microM) significantly increased the peak amplitude of KCl-evoked Ca2+ transients. These data demonstrate that Ca2+ stores do play a major role in Ca2+ homeostasis in TGN cell bodies. To determine the role of the sodium-calcium exchanger (NCX) in KCl-evoked Ca2+ transients in TGNs, we inhibited the exchanger with KB-R7943 (10 microM), or by replacing Na+ with Li+. NCX inhibition did not affect either the peak amplitude or the decay kinetics of the KCl-evoked Ca2+ transients. Therefore, the NCX does not play a significant role in removing cytosolic Ca2+ from TGNs. To test whether the plasma membrane calcium-ATPase (PMCA) contributes to Ca2+ extrusion, we inhibited its activity by a shift to alkaline pH (9.0). At pH 9.0, both the peak amplitude and decay time of the KCl-evoked Ca2+ transient were increased significantly. These data suggest that, in TGNs, the PMCA is the major mechanism for removing cytosolic Ca2+ following electrical activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceca.2006.08.014DOI Listing

Publication Analysis

Top Keywords

ca2+ transients
24
kcl-evoked ca2+
20
cell bodies
16
ca2+
16
peak amplitude
16
ca2+ homeostasis
12
transients tgns
12
homeostasis trigeminal
8
trigeminal ganglion
8
primary sensory
8

Similar Publications

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.

View Article and Find Full Text PDF

Ca excitability of glia to neuromodulator octopamine in Drosophila living brain is greater than that of neurons.

Acta Physiol (Oxf)

February 2025

Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.

Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.

View Article and Find Full Text PDF

Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!