Polar lipids, such as monoglycerides and phospholipids, are amphiphilic molecules commonly used as processing and stabilization aids in the manufacturing of food products. As all amphiphilic molecules (surfactants, emulsifiers) they show self-assembly phenomena when added into water above a certain concentration (the critical aggregation concentration). The variety of self-assembly structures that can be formed by polar food lipids is as rich as it is for synthetic surfactants: micelles (normal and reverse micelles), microemulsions, and liquid crystalline phases can be formulated using food-grade ingredients. In the present work we will first discuss microemulsion and liquid crystalline phase formation from ingredients commonly used in food industry. In the last section we will focus on three different potential application fields, namely (i) solubilization of poorly water soluble ingredients, (ii) controlled release, and (iii) chemical reactivity. We will show how the interfacial area present in self-assembly structures can be used for (i) the delivery of functional molecules, (ii) controlling the release of functional molecules, and (iii) modulating the chemical reactivity between reactive molecules, such as aromas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2006.07.003 | DOI Listing |
Nutrients
January 2025
Nederlandse Zuivel Organisatie (NZO), 2596 BC The Hague, The Netherlands.
: Transitions toward more sustainable food systems may become rather polarized, particularly in the plant-based vs. animal-based debate. These discussions, however, are often based on environmental impact data from individual products or product groups and do not consider that the products together should form a nutrient-adequate diet that is also affordable.
View Article and Find Full Text PDFNutrients
January 2025
Department of Management, Sapienza University of Rome, 00161 Rome, Italy.
Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.
Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.
Molecules
January 2025
College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, China.
The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Labill. and L. for neuroprotective purposes.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
This study explores the green extraction of phenolic antioxidants from fruit using choline-chloride-based deep eutectic solvents (DESs) as an eco-friendly alternative to conventional solvents. Sixteen DESs, prepared by combining choline chloride with various hydrogen bond donors, were characterized for their physical properties, including viscosity, polarity, and pH, and applied to extract phenolics from . High-performance liquid chromatography (HPLC) quantified key phenolic compounds, including neochlorogenic and chlorogenic acid, quercetin derivatives, and cyanidin derivatives, as well as total phenolic acids, flavanols, and anthocyanins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!