A new octanuclear copper(II) complex has been synthesized and structurally characterized by X-ray crystallography: [Cu(8)(HL)(4)(OH)(4)(H(2)O)(2)(ClO(4))(2)].(ClO(4))(2).2H(2)O (1) (H(3)L=2,6-bis(hydroxyethyliminoethyl)-4-methyl phenol). The complex is formed by the linkage of two terminal bimetallic cationic units and a tetranuclear mu(3)-hydroxo bridged dicubane core by a very short intramolecular hydrogen bond (O-H...O, 1.48(3)A and the angle 175 degrees). The coordination sphere of the terminal copper atoms is square pyramidal, the apical positions being occupied by water and a perchlorate ion. Complex 1 self-assembles to form a new type of water-perchlorate helical network [(H(2)O)(2)(ClO(4))](infinity) involving oxygen atoms of coordinated perchlorate ion and the two lattice water molecules through hydrogen-bonding interaction. The variable temperature-dependent susceptibility measurement (2-300K) of 1 reveals a strong antiferromagnetic coupling, J(1)=-220cm(-1) and J(2)=-98cm(-1) (J(1) and J(2) representing the exchange constant within [Cu(2+)](4) and [Cu(2+)](2) units, respectively). The complex binds to double-stranded supercoiled plasmid DNA giving a K(app) value of 1.2x10(7)M(-1) and displays efficient oxidative cleavage of supercoiled DNA in the presence of H(2)O(2) following a hydroxyl radical pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2006.08.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!