Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis-DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 microM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1988847 | PMC |
http://dx.doi.org/10.1016/j.jmb.2006.09.043 | DOI Listing |
Biomaterials
January 2025
Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:
Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada. Electronic address:
Patients with colorectal cancers (CRCs) that have microsatellite instability (MSI) (MSI CRCs) face a better prognosis than those with the more common chromosomal instability (CIN) subtype (CIN CRCs) due to improved T cell-mediated anti-tumor immune responses. Previous investigations identified the cytosolic DNA (cyDNA) sensor STING as necessary for chemokine-mediated T cell recruitment in MSI CRCs. Here, we find that cyDNA from MSI CRC cells is inherently more capable of inducing STING activation and improves cytotoxic T cell activation by dendritic cells (DCs).
View Article and Find Full Text PDFMol Plant
January 2025
State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:
It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Reproductive Medicine Center, Zhuhai Maternal and Child Health Care Hospital, 543 Ningxi Road, Zhuhai, 519000, China.
Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.
Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!