Herein we report on the synthesis and DNA binding properties of a new class of water soluble oxazole-based peptide macrocycles that bind selectively to quadruplex DNA, with no detectable binding to duplex DNA. We have recently identified one quadruplex in the proto-oncogene c-kit that is suspected to act as a regulatory element for the expression of the c-kit gene. Here we provide the first example of a ligand binding to and stabilizing the c-kit quadruplex. Moreover, we show that these macrocycles show a preference for the c-kit quadruplex as compared to the human telomeric quadruplex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195899PMC
http://dx.doi.org/10.1021/ja064713eDOI Listing

Publication Analysis

Top Keywords

oxazole-based peptide
8
peptide macrocycles
8
c-kit quadruplex
8
quadruplex
5
macrocycles class
4
class g-quadruplex
4
binding
4
g-quadruplex binding
4
binding ligands
4
ligands report
4

Similar Publications

We report the development of a new oxazole-based cleavable linker to release peptides from attached cargo. Oxazoles are stable to most reaction conditions, yet they can be rapidly cleaved in the presence of single-electron oxidants like cerium ammonium nitrate (CAN). An oxazole linker could be synthesized and attached to peptides through standard solid-phase peptide coupling reactions.

View Article and Find Full Text PDF

The catalytic redox activity of Cu(II) bound to the amino-terminal copper and nickel (ATCUN) binding motif (Xxx-Zzz-His, XZH) is stimulating the development of catalytic metallodrugs based on reactive oxygen species (ROS)-mediated biomolecule oxidation. However, low Cu(I) availability resulting from the strong Cu(II) binding affinity of the ATCUN motif is regarded as a limitation to efficient ROS generation. To address this, we replaced the imidazole moiety (p 7.

View Article and Find Full Text PDF

Prolyl oligopeptidase (PREP) is a widely distributed serine protease in the human body cleaving proline-containing peptides; however, recent studies suggest that its effects on pathogenic processes underlying neurodegeneration are derived from direct protein-protein interactions (PPIs) and not from its regulation of certain neuropeptide levels. We discovered novel nonpeptidic oxazole-based PREP inhibitors, which deviate from the known structure-activity relationship for PREP inhibitors. These new compounds are effective modulators of the PPIs of PREP, reducing α-synuclein (αSyn) dimerization and enhancing protein phosphatase 2A activity in a concentration-response manner, as well as reducing reactive oxygen species production.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating neurological disorder for which soluble oligomers of the peptide amyloid-β (Aβ) are now recognized as the neurotoxic species. Metal-based therapeutics are uniquely suited to target Aβ, with ruthenium-based (Ru) complexes emerging as propitious candidates. Recently, azole-based Ru(III) complexes were observed to modulate the aggregation of Aβ in solution, where the inclusion of a primary amine proximal to the ligand coordination site improved the activity of the complexes.

View Article and Find Full Text PDF

A series of novel synthetic substituted benzo[d]oxazole-based derivatives (-) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer's disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ-induced PC12 cells at 5 μg/mL. We found that compound was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ-induced PC12 cells at 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!