Gitelman's syndrome (GS) is a variant of Bartter's syndrome (BS) characterized by hypokalemic alkalosis, hypomagnesemia, hypocalciuria and secondary aldosteronism without hypertension. A 31-year-old Japanese man who had suffered from mild hypokalemia for 10 years was admitted to our hospital. He had metabolic alkalosis, hypokalemia and hypocalciuria. Since he had two missense mutations (R261C and L623P) in the thiazide-sensitive Na-Cl cotransporter (TSC) gene (SLC12A3), he was diagnosed as having GS. He showed hyperreninism and a high angiotensin I (Ang I) level, whereas his angiotensin II (Ang II) and aldosterone levels were not elevated. His angiotensin converting enzyme (ACE) activities were normal, and administration of captopril inhibited the production of Ang II and aldosterone. We evaluated the Ang II-forming activity (AIIFA) of other enzymes in his lymphocytes. Interestingly, chymase-dependent AIIFA was not detected in the lymphocytes. Together, these results suggest that the lack of chymase activity resulted in the manifestation of GS without hyperaldosteronism.

Download full-text PDF

Source
http://dx.doi.org/10.1291/hypres.29.545DOI Listing

Publication Analysis

Top Keywords

gitelman's syndrome
8
ii-forming activity
8
angiotensin ang
8
ang aldosterone
8
case gitelman's
4
syndrome decreased
4
angiotensin
4
decreased angiotensin
4
angiotensin ii-forming
4
activity gitelman's
4

Similar Publications

Gitelman syndrome with diabetes and kidney stones: A case report.

Medicine (Baltimore)

January 2025

The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China.

Rationale: Gitelman syndrome (GS) is a rare hereditary electrolyte disorder caused by mutations in the SLC12A3 gene. There is limited literature on the role of hydrochlorothiazide (HCT) testing and the SLC12A3 single heterozygous mutation in the diagnosis and management of patients with GS. In addition, cases of GS with concomitant kidney stones are rare.

View Article and Find Full Text PDF

Autoimmune Tubulopathies.

J Am Soc Nephrol

January 2025

Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France.

The renal tubule and collecting duct express a large number of proteins, all having putative immunoreactive motives. Therefore, all can be the target of pathogenic autoantibodies. However, autoimmune tubulopathies seem to be rare and we hypothesize that they are underdiagnosed.

View Article and Find Full Text PDF

The evolving concepts of KS-WNK1 effect on NCC activity.

Am J Physiol Renal Physiol

February 2025

Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.

The field of the with-no-lysine kinases (WNKs) regulation of the thiazide-sensitive NaCl cotransporter (NCC) began at the start of the century with the discovery that mutations in two members of the family, WNK1 and WNK4, resulted in a condition known as familial hyperkalemic hypertension (FHHt). Since FHHt is the mirror image of Gitelman's syndrome that is caused by inactivating mutations of the SLC12A3 gene encoding NCC, it was expected that WNKs modulated NCC activity and that the increased function of the cotransporter is the pathophysiological mechanism of FFHt. This turned out to be the case.

View Article and Find Full Text PDF
Article Synopsis
  • Gitelman Syndrome (GS) is a rare genetic disorder that leads to low potassium and magnesium levels, alongside other metabolic issues, and presents unique challenges in managing these conditions during pregnancy.
  • A case study of a 20-year-old woman with GS highlights the use of amiloride, a medication typically used for GS, to successfully manage her persistent low potassium levels during pregnancy and lactation.
  • The treatment with amiloride effectively controlled her symptoms without causing any harmful effects on her newborn, suggesting potential safety for the mother and child under careful management.
View Article and Find Full Text PDF
Article Synopsis
  • - Gitelman syndrome (GS) is a rare genetic disorder leading to electrolyte imbalances, notably low potassium levels, due to a mutation in the SLC12A3 gene, affecting kidney function.
  • - A 35-year-old man with GS and severe hypokalemia was treated with finerenone, a new medication that helps increase potassium levels without the adverse effects commonly seen with other treatments like spironolactone.
  • - This case is significant as it represents the first reported use of finerenone for Gitelman syndrome, providing an alternative treatment option for patients unable to tolerate traditional therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!