Computational neurogenetic modelling: a pathway to new discoveries in genetic neuroscience.

Int J Neural Syst

Knowledge Engineering & Discovery Research Institute, Auckland University of Technology, Ronald Trotter Building, 581-585 Great South Road, Penrose, Auckland, New Zealand.

Published: June 2006

The paper presents a methodology for using computational neurogenetic modelling (CNGM) to bring new original insights into how genes influence the dynamics of brain neural networks. CNGM is a novel computational approach to brain neural network modelling that integrates dynamic gene networks with artificial neural network model (ANN). Interaction of genes in neurons affects the dynamics of the whole ANN model through neuronal parameters, which are no longer constant but change as a function of gene expression. Through optimization of interactions within the internal gene regulatory network (GRN), initial gene/protein expression values and ANN parameters, particular target states of the neural network behaviour can be achieved, and statistics about gene interactions can be extracted. In such a way, we have obtained an abstract GRN that contains predictions about particular gene interactions in neurons for subunit genes of AMPA, GABAA and NMDA neuro-receptors. The extent of sequence conservation for 20 subunit proteins of all these receptors was analysed using standard bioinformatics multiple alignment procedures. We have observed abundance of conserved residues but the most interesting observation has been the consistent conservation of phenylalanine (F at position 269) and leucine (L at position 353) in all 20 proteins with no mutations. We hypothesise that these regions can be the basis for mutual interactions. Existing knowledge on evolutionary linkage of their protein families and analysis at molecular level indicate that the expression of these individual subunits should be coordinated, which provides the biological justification for our optimized GRN.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065706000627DOI Listing

Publication Analysis

Top Keywords

neural network
12
computational neurogenetic
8
neurogenetic modelling
8
brain neural
8
gene interactions
8
gene
5
modelling pathway
4
pathway discoveries
4
discoveries genetic
4
genetic neuroscience
4

Similar Publications

Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.

Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.

View Article and Find Full Text PDF

Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.

Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.

View Article and Find Full Text PDF

Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.

View Article and Find Full Text PDF

Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures.

View Article and Find Full Text PDF

The advent of three-dimensional convolutional neural networks (3D CNNs) has revolutionized the detection and analysis of COVID-19 cases. As imaging technologies have advanced, 3D CNNs have emerged as a powerful tool for segmenting and classifying COVID-19 in medical images. These networks have demonstrated both high accuracy and rapid detection capabilities, making them crucial for effective COVID-19 diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!