Compared with our knowledge of senescence in annuals and biennials, little is known about age-related changes in perennials. To get new insights into the mechanisms underlying aging in perennials, we measured oxidative stress markers in leaves and organelles, together with abscisic acid levels in leaves of 2- and 7-year-old Cistus clusii dunal plants grown under Mediterranean field conditions. Recently emerged leaves, which either appeared during autumn or spring, were compared to evaluate the effects of environmental constraints on oxidative stress and abscisic acid accumulation as plants aged. Plant aging led to an enhanced oxidation of ot-tocopherol and ascorbate, increased lipid peroxidation and reduced PSII efficiency in leaves during the more stressful conditions of spring and summer, but not during autumn. Analyses of lipid peroxidation in organelles isolated from the same leaves revealed that oxidative stress occurred both in chloroplasts and mitochondria. Although both plant groups showed similar leaf water and nitrogen contents throughout the study, abscisic acid levels were markedly higher (up to 75%) in 7-year-old plants compared to 2-year-old plants throughout the study. It is concluded that (a) meristematic tissues of C. clusii maintain the capacity to make new leaves with no symptoms of oxidative stress for several years, unless these leaves are exposed to environmental constraints, (b) leaves of oldest plants show higher oxidative stress than those of young plants when exposed to adverse climatic conditions, thus supporting the idea that the oxidative stress associated with aging is due at least partly to extrinsic factors, (c) at the subcellular level, age-induced oxidative stress occurs both in chloroplasts and mitochondria, and (d) even in the absence of environmental stress, newly emerged leaves accumulate higher amounts of ABA as plants age.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-006-0412-zDOI Listing

Publication Analysis

Top Keywords

oxidative stress
32
abscisic acid
16
acid levels
12
stress
9
leaves
9
age-related changes
8
oxidative
8
stress markers
8
cistus clusii
8
grown mediterranean
8

Similar Publications

Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the pro-gressive loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunction and non-motor symptoms. Current treatments primarily offer symptomatic relief without halt-ing disease progression. This has driven the exploration of natural compounds with neuropro-tective properties.

View Article and Find Full Text PDF

Background: Postmenopausal women (PMW) who complete menopause at a late age (55+ years) have lower cardiovascular disease risk than PMW who complete menopause at a normal age (45-54 years). However, the influence of late-onset menopause on vascular endothelial dysfunction is unknown. Moreover, the mechanisms by which a later age at menopause may modulate endothelial function remain to be determined.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays a critical role in the regulation and progress of autophagy, an essential recycling process that influences cellular homeostasis and stress response. Autophagy is characterized by the formation of intracellular vesicles analogous to recycle "bags" called autophagosomes, which fuse with lysosomes to form autolysosomes, eventually ending up as lysosomes. We have developed two novel autophagic vesicle-targeted peptide-based sensors, for HO and for pH, to simultaneously track HO and pH dynamics within autophagic vesicles as autophagy advances.

View Article and Find Full Text PDF

L. fruits and leaf extracts have a broad range of immunomodulatory, anti-inflammatory, and antioxidant effects; however, their effects on cardiac protection have not been investigated. The study aims to test the biological activity of L.

View Article and Find Full Text PDF

Objective: To investigate the association between Oxidative Balance Score (OBS) and glaucoma risk.

Methods: Using data from the National Health and Nutrition Examination Survey (2005-2008), we analyzed 2,615 participants aged ≥40 years. OBS was calculated from 15 antioxidant and 5 pro-oxidant components, including dietary nutrients and lifestyle factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!