Fungi have the potential to produce a wide range of secondary metabolites including polyketides and small peptides produced by nonribosomal peptide synthetases (NPS). Fusarium graminearum is a mycotoxin producing pathogen of cereals and knowledge of the infection process is essential for the development of disease control. Bioinformatics provide a means to identify genes encoding NPSs, the products of which may act as fungal virulence factors. The F. graminearum genome sequence was analysed and similarity searches and application of prediction server service identified 15 putative NPS genes. NPS1 and NPS2, were found to be related to genes involved in NPS hydroxamate siderophore biosynthesis and chemical analysis of a F. graminearum NPS2 deletion mutant showed that this gene encodes the NPS responsible for the biosynthesis of ferricrocin. The expression of the NPS genes was analysed in Fusarium culmorum. NPS1 and NPS19 differed from the remainder of the genes, as they were only expressed during infection of barley roots and not under the different culture conditions tested. Strains of F. graminearum, F. culmorum and Fusarium pseudograminearum were examined for the presence and expression of the 15 identified NPS genes. With the exception of NPS18, that is absent in F. pseudograminearum, all the NPS genes are represented in the diffferent species. Lack of transcripts from some genes and the presence of frameshift and stop codons in four of the NPS genes in the sequenced F. graminearum strain suggest that some are pseudogenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00294-006-0103-0 | DOI Listing |
Sci Rep
January 2025
Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Egypt.
Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413 115, India.
Fish face health hazards due to high-temperature (T) stress and the toxicity associated with nickel (Ni), both of which can occur in aquatic ecosystems. The accumulation of nickel in fish may pose risks to human health when contaminated fish are consumed. Consequently, the goal of this study was to clarify how selenium nanoparticles (Se-NPs) help Pangasianodon hypophthalmus by reducing the effects of nickel and high-temperature stress.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China. Electronic address:
Chemotherapy remains the primary treatment modality for breast cancer (BCa) patients. However, chemoresistance commonly arises in clinical settings, contributing to poor prognosis. The development of chemoresistance is a dynamic and complex process involving the activation of oncogenes and inactivation of tumor suppressor genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!