Quantum chemical study of electronic and structural properties of retinal and some aromatic analogs.

J Chem Phys

Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, São Paulo, Brazil.

Published: October 2006

AI Article Synopsis

Article Abstract

The electronic and structural properties of retinal and four analogs were studied using semiempirical, ab initio Hartree-Fock, and density functional theory methods with the aim to evaluate the effects caused by some structural modifications in the ring bound to the polyenic chain and compared with the all-E-trans-retinal molecule. Therefore, some properties such as bond lengths, bond angles, atomic charges derived from electrostatic potential charges from electrostatic potential using grid based method as well as frontier orbitals of the polyenic chain were analyzed. Furthermore, the transition energies of the molecules were also calculated using the Zerner's intermediate neglect of differential overlap-spectroscopic, time-dependent Hartree-Fock, and time-dependent density functional theory methods. The results indicate that in spite of the structural modifications of retinal derivatives in comparison with all-E-trans-retinal, their properties seem similar. Thus, these molecules may behave similarly to all-E-trans-retinal and possibly be attempted in the search of novel molecular devices.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2354498DOI Listing

Publication Analysis

Top Keywords

electronic structural
8
structural properties
8
properties retinal
8
density functional
8
functional theory
8
theory methods
8
structural modifications
8
polyenic chain
8
electrostatic potential
8
quantum chemical
4

Similar Publications

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation.

Vision Res

January 2025

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).

View Article and Find Full Text PDF

Loneliness is associated with different structural brain changes in schizophrenia spectrum disorders and major depression.

Schizophr Res

January 2025

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Germany. Electronic address:

Background: Loneliness, distress from having fewer social contacts than desired, has been recognized as a significant public health crisis. Although a substantial body of research has established connections between loneliness and various forms of psychopathology, our understanding of the neural underpinnings of loneliness in schizophrenia spectrum disorders (SSD) and major depressive disorder (MDD) remains limited.

Methods: In this study, structural magnetic resonance imaging (sMRI) data were collected from 57 SSD and 45 MDD patients as well as 41 healthy controls (HC).

View Article and Find Full Text PDF

Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties.

View Article and Find Full Text PDF

Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing AuTe) claimed various chemical compositions for this low-symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal, and electronic characteristics unknown. Here, we investigate the stability, electronic properties, and synthesis of the gold antimony tellurides AuSbTe and AuSbTe (montbrayite).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!