Removal of induced nanobubbles from water/graphite interfaces by partial degassing.

Langmuir

Nanobiology Laboratory, Bio-X Life Science Research Center, College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China.

Published: October 2006

Nanobubbles at an interface between a hydrophobic solid and water have a wide range of implications, but the evidence for their existence is still being debated. Here we artificially induced nanobubbles on freshly cleaved HOPG substrates in water using the protocol developed previously and subjected the system to moderate levels of degassing (approximately 0.1 atm for 0.5 to 3 h). The AFM images after the partial degassing revealed that some nanobubbles had coalesced and detached from the substrate because of buoyancy, whereas others apparently remained unaffected. The size and spatial distributions of the nanobubbles after the partial degassing suggest that there is a critical size for a nanobubble above which it may grow. The contact angle of water next to nanobubbles (approximately 160 degrees) is much larger than the advancing contact angle of a macroscopic water droplet on the same substrate (approximately 80 degrees) both before and after the partial degassing and concomitant growth and shrinkage of the nanobubbles. The contact angle of a nanobubble also remained unchanged as the nanobubble was moved along the substrate by the AFM tip. The apparent lack of contact angle hysteresis in the nanobubble systems may suggest that the very large contact angle may correspond to a local minimum of the free-energy landscape.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la061432bDOI Listing

Publication Analysis

Top Keywords

contact angle
20
partial degassing
16
induced nanobubbles
8
nanobubbles
7
degassing
5
contact
5
angle
5
removal induced
4
nanobubbles water/graphite
4
water/graphite interfaces
4

Similar Publications

Because of their uniform and regular channels, adjustable pore size, large surface area, controllable wall composition, high hydrothermal stability, ease of functional modification, and good accessibility of larger reactant molecules, mesoporous siliceous SBA-15 is of excellent catalyst carrier that is highly versatile and has been used extensively to prepare a variety of supported catalysts with ideal catalytic properties. In this study, we report the synthesis, characterization, and catalytic application of Cu-Ag/ SBA-15 nanoalloy catalysts towards the control of microorganisms in drinking water has been reported. The Cu-Ag/SBA-15 nanoalloy catalysts with different molar mass ratio of copper to silver (Cu:Ag = 1: 0, 0.

View Article and Find Full Text PDF

Cellulose-based multifunctional materials with robust hydrophobic, antibacterial, and antioxidant properties through dynamic cross-linked network structures.

Int J Biol Macromol

January 2025

Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:

Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).

View Article and Find Full Text PDF

The clinical application of curcumin (CUR) is restricted by its low solubility, instability, and poor bioavailability. To overcome these limitations, we developed a novel stearic acid-grafted inulin-based nano-delivery system for CUR encapsulation. The structure of stearoyl inulin (SA-IN) was characterized using Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, thermogravimetric analysis, and contact angle measurements.

View Article and Find Full Text PDF

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Background Recommendations regarding long-term postoperative activity are intended to prevent adverse events, but no common policy or best practice exists among ophthalmologists for pediatric patients. We surveyed ophthalmologists on their postoperative guidelines after the one-month postoperative period following childhood cataract and glaucoma surgeries. Methods A 28-question anonymous Qualtrics survey was distributed via listservs and social media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!