Structure of testis ACE glycosylation mutants and evidence for conserved domain movement.

Biochemistry

Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.

Published: October 2006

Human angiotensin-converting enzyme is an important drug target for which little structural information has been available until recent years. The slow progress in obtaining a crystal structure was due to the problem of surface glycosylation, a difficulty that has thus far been overcome by the use of a glucosidase-1 inhibitor in the tissue culture medium. However, the prohibitive cost of these inhibitors and incomplete glucosidase inhibition makes alternative routes to minimizing the N-glycan heterogeneity desirable. Here, glycosylation in the testis isoform (tACE) has been reduced by Asn-Gln point mutations at N-glycosylation sites, and the crystal structures of mutants having two and four intact sites have been solved to 2.0 A and 2.8 A, respectively. Both mutants show close structural identity with the wild-type. A hinge mechanism is proposed for substrate entry into the active cleft, based on homology to human ACE2 at the levels of sequence and flexibility. This is supported by normal-mode analysis that reveals intrinsic flexibility about the active site of tACE. Subdomain II, containing bound chloride and zinc ions, is found to have greater stability than subdomain I in the structures of three ACE homologues. Crystallizable glycosylation mutants open up new possibilities for cocrystallization studies to aid the design of novel ACE inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892614PMC
http://dx.doi.org/10.1021/bi061146zDOI Listing

Publication Analysis

Top Keywords

glycosylation mutants
8
structure testis
4
testis ace
4
glycosylation
4
ace glycosylation
4
mutants
4
mutants evidence
4
evidence conserved
4
conserved domain
4
domain movement
4

Similar Publications

D e h ydro d olichyl d iphosphate s ynthase (DHDDS) is an essential enzyme required for several forms of protein glycosylation in all eukaryotic cells. Surprisingly, three mutant alleles, ( (K42E/K42E), (T206A/K42E), and found in only one patient, (R98W/K42E) have been reported that cause non-syndromic retinitis pigmentosa (RP59), an inherited retinal degeneration (IRD). Because T206A was only observed heterozygously with the K42E allele in RP59 patients, we used CRISPR/CAS9 technology to generate T206A/T206A, and subsequently T206A/K42E alleles in mice to assess the contribution of the T206A allele to the disease phenotype, to model the human disease, and to compare resulting phenotypes to our homozygous K42E mouse model.

View Article and Find Full Text PDF

Gp70 is a cell wall protein required for adhesion, proper interaction with innate immune cells, and virulence.

Cell Surf

June 2025

Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico.

is one of the leading etiological agents of sporotrichosis, a cutaneous and subcutaneous mycosis worldwide distributed. This organism has been recently associated with epidemic outbreaks in Brazil. Despite the medical relevance of this species, little is known about its virulence factors, and most of the information on this subject is extrapolated from .

View Article and Find Full Text PDF

N-glycosylation of ephrin B1 modulates its function and confers therapeutic potential in B-cell lymphoma.

J Biol Chem

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, 210023, China. Electronic address:

Given the pivotal role of the Eph-Ephrin signaling pathway in tumor progression, agonists or antagonists targeting Eph/Ephrin have emerged as promising anticancer strategies. However, the implications of glycosylation modifications within Eph/Ephrin and their targeted protein therapeutics remain elusive. Here, we identify that N-glycosylation within the receptor-binding domain (RBD) of ephrin B1 (EFNB1) is indispensable for its functional repertoire.

View Article and Find Full Text PDF

Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys).

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!