Beta-thalassemia is a genetic, red blood cell disorder affecting the beta-globin chain of the adult hemoglobin gene. This results in excess accumulation of unpaired alpha-chain gene products leading to reduced red blood cell life span and the development of severe anemia. Current treatment of this disease involves regular blood transfusion and adjunct chelation therapy to lower blood transfusion-induced iron overload. Fetal hemoglobin switching agents have been proposed to treat genetic blood disorders, such as sickle cell anemia and beta-thalassemia, in an effort to compensate for the dysfunctional form of the beta-globin chain in adult hemoglobin. The rationale behind this approach is to pair the excess normal alpha-globin chain with the alternative fetal gamma-chain to promote red blood cell survival and ameliorate the anemia. Reprogramming of differentiation in intact, mature, adult white blood cells in response to inclusion of monoclonal antibody CR3/43 has been described. This form of retrograde development has been termed "retrodifferentiation", with the ability to re-express a variety of stem cell markers in a heterogeneous population of white blood cells. This form of reprogramming, or reontogeny, to a more pluripotent stem cell state ought to recapitulate early hematopoiesis and facilitate expression of a fetal and/or adult program of hemoglobin synthesis or regeneration on infusion and subsequent redifferentiation. Herein, the outcome of infusion of autologous retrodifferentiated stem cells (RSC) into 21 patients with beta-thalassemia is described. Over 6 months, Infusion of 3-h autologous RSC subjected to hematopoietic-conducive conditions into patients with beta-thalassemia reduced mean blood transfusion requirement, increased mean fetal hemoglobin synthesis, and significantly lowered mean serum ferritin. This was always accompanied by an increase in mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) in such patients. No adverse side effects in response to the infusion of autologous RSC were noted. This novel clinical procedure may profoundly modify the devastating course of many genetic disorders in an autologous setting, thus paving the way to harnessing pluripotency from differentiated cells to regenerate transiently an otherwise genetically degenerate tissue such as thalassemic blood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917317 | PMC |
http://dx.doi.org/10.1100/tsw.2006.229 | DOI Listing |
J Immunother Cancer
January 2025
Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).
View Article and Find Full Text PDFNat Med
January 2025
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
Cirrhosis is a major cause of morbidity and mortality; however, there are no approved therapies except orthotopic liver transplantation. Preclinical studies showed that bone-marrow-derived macrophage injections reduce inflammation, resolve fibrosis and stimulate liver regeneration. In a multicenter, open-label, parallel-group, phase 2 randomized controlled trial ( ISRCTN10368050 ) in n = 51 adult patients with compensated cirrhosis and Model for End-Stage Liver Disease (MELD) score ≥10 and ≤17, we evaluated the efficacy of autologous monocyte-derived macrophage therapy (n = 27) compared to standard medical care (n = 24).
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.
View Article and Find Full Text PDFExpert Opin Biol Ther
January 2025
Department of Malignant Hematology, Moffitt Cancer Center, Tampa, USA.
Introduction: CAR-T therapy has transformed the treatment landscape for relapsed/refractory diffuse large B-cell lymphomas (DLBCL).
Areas Covered: This article reviews the existing evidence for using CAR-T therapy as a second-line treatment. Two major phase 3 trials, ZUMA-7 and TRANSFORM, have shown that axi-cel and liso-cel, respectively, offer superior outcomes compared to historical standard chemoimmunotherapy and consolidation with autologous hematopoietic stem cell transplantation (auto-HCT).
Rev Med Chil
June 2024
Servicio de Medicina física y Rehabilitación, Hospital del Salvador, Santiago, Chile.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!