A seizure-paralysis repertoire characteristic of Drosophila "bang-sensitive" mutants can be evoked electroconvulsively in tethered flies, in which behavioral episodes are associated with synchronized spike discharges in different body parts. Flight muscle DLMs (dorsal longitudinal muscles) display a stereotypic sequence of initial and delayed bouts of discharges (ID and DD), interposed with giant fiber (GF) pathway failure and followed by a refractory period. We examined how seizure susceptibility and discharge patterns are modified in various K(+) and Na(+) channel mutants. Decreased numbers of Na(+) channels in nap(ts) flies drastically reduced susceptibility to seizure induction, eliminated ID, and depressed DD spike generation. Mutations of different K(+) channels led to differential modifications of the various components in the repertoire. Altered transient K(+) currents in Sh(133) and Hk mutants promoted ID induction. However, only Sh(133) but not Hk mutations increased DD seizure and GF pathway failure durations. Surprisingly, modifications in sustained K(+) currents in eag and Shab mutants increased thresholds for DD induction and GF pathway failure. Nevertheless, both eag and Shab, like Sh(133), increased DD spike generation and recovery time from GF pathway failure. Interactions between channel mutations with the bang-sensitive mutation bss demonstrated the role of membrane excitability in stress-induced seizure-paralysis behavior. Seizure induction and discharges were suppressed by nap(ts) in bss nap double mutants, whereas Sh heightened seizure susceptibility in bss Sh(133) and bss Sh(M) double mutants. Our results suggest that individual seizure repertoire components reflect different neural network activities that could be differentially altered by mutations of specific ion channel subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00499.2006DOI Listing

Publication Analysis

Top Keywords

pathway failure
16
seizure susceptibility
12
na+ channel
8
channel mutants
8
seizure induction
8
spike generation
8
eag shab
8
double mutants
8
seizure
7
mutants
7

Similar Publications

Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects.

View Article and Find Full Text PDF

Heart failure (HF) represents a significant global health challenge, characterized by high morbidity and mortality rates, decreased quality of life and a significant financial and economic burden. The prevalence of HF continues to rise, driven by an ageing population and an increasing burden of comorbidities such as hypertension, diabetes and obesity. Understanding the complex pathophysiology and developing effective treatments are critical for improving patient outcomes, yet the range of effective, life-prolonging medication classes has remained mostly constant in the last few decades.

View Article and Find Full Text PDF

Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation.

View Article and Find Full Text PDF

Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis.

View Article and Find Full Text PDF

A serious challenge of the chronic administration of dexamethasone (DEX) is a delay in wound healing. Thus, this study aimed to investigate the potential of Tadalafil (TAD)-loaded proniosomal gel to accelerate the healing process of skin wounds in DEX-challenged rabbits. Skin wounds were induced in 48 rabbits of 4 groups (n = 12 per group) and skin wounds were treated by sterile saline (control), TAD-loaded proniosomal gel topically on skin wound, DEX-injected rabbits, and DEX+TAD-loaded proniosomal gel for 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!