We reported previously that glycerol is a substrate for energy production in cardiomyocytes. Increasing glycerol availability results in increased glycerol uptake and its involvement in complex lipid biosynthesis and energy production. This study evaluated the relationship between glycerol supply, energy demand, and intermediary metabolism leading to energy production. The work was performed on isolated rat heart perfused in the working mode. Glycerol concentrations modeled the fasting (0.33 mM) and fed (3.33 mM) states. Cardiac energy demand was modeled by increasing heart rate from 350 to 450 beats/min (bpm). Increasing glycerol supply increased glycerol uptake from 1.4 (350 bpm) to 3.8 (450 bpm) and from 9.7 (350 bpm) to 34.2 (450 bpm) micro mol glycerol/heart in 30 min at 0.33 and 3.33 mM glycerol, respectively. At low glycerol supply, increasing heart rate did not influence the complex lipid synthesis. Conversely, high glycerol concentration increased the complex lipid synthesis by 5- and 30-fold at 350 and 450 bpm, respectively. Increasing glycerol supply and heart rate significantly increased glycerol oxidation rate. Moreover, increasing glycerol supply did not affect glucose oxidation but increased palmitate uptake and significantly decreased its beta-oxidation. Physiological concentrations of glycerol contribute to the cardiac intermediary metabolism, both for energy production and glycerolipid synthesis. Increasing energy demand enhances the requirement and use of glycerol. Glycerol contributes to the regulation of cardiac metabolism and energy balance, mainly by decreasing the contribution of fatty acid oxidation, and may thus represent a new factor in cardiac protection through the reduction of oxygen demand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00563.2006 | DOI Listing |
J Mater Sci Mater Med
January 2025
Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.
Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Ascomycin (FK520) is a 23-membered macrolide antibiotic primarily produced by the Streptomyces hygroscopicus var. ascomyceticus. Structurally similar to tacrolimus and rapamycin, it serves as an effective immunosuppressant widely used in the treatment of rejection reactions after organ transplantation and certain autoimmune diseases.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.
Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea.
Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.
Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.
Microb Cell Fact
December 2024
Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran.
Background: Vitamin K2 is an essential nutrient for blood coagulation and cardiovascular health and mainly produced by bacteria strain like B. subtilis. researchers have explored producing strain improvement, cultivation mode, environmental optimization, increased secretion, and using cheaper carbon and nitrogen sources in order to increase vitamin K2 productivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!