Background: Urinary oxalate is commonly measured with an enzymatic assay that is specific but requires a manual clean-up step to reduce ascorbic acid interference. We developed a urinary oxalate assay that uses liquid chromatography-tandem mass spectrometry (LC-MS/MS) with anion exchange chromatography and simple sample preparation.
Methods: We added calibrator or urine sample (10 microL) to 10 microL of (13)C2 oxalate and 400 microL of water and performed separation on a Waters OASIS WAX column, flow rate 0.6 mL/min, and then elution for 0.3 min with water containing 2 mmol/L ammonium acetate and 1 mL/L formic acid and for 1.0 min with 750 mL/L methanol containing 20 mL/L ammonia. We detected multiple reaction monitoring transitions m/z 88.6 > 60.5 and m/z 90.5 > 61.5 for oxalic acid and 13C2-oxalate, respectively, with a Quattro micro tandem mass spectrometer in electrospray-negative mode.
Results: Oxalate and 13C2-oxalate eluted at 1.2 min. Mean recovery was 95%, limit of detection 3.0 micromol/L, lower limit of quantification 100.0 micromol/L, linearity to 2212 micromol/L, imprecision <6%, and bias <3% at 166, 880, and 1720 micromol/L. Oxalate eluted after the main area of ion suppression. Mean response ratios for urine and aqueous samples, enriched at 200 and 1000 micromol/L, were 3.7% and 5.4%, respectively. No interference was observed from other organic acids. Passing and Bablock regression analysis comparing the Trinity Biotech enzymatic reagent set and LC-MS/MS showed LC-MS/MS = 1.06 (enzymatic assay) -21.2, r = 0.964, n = 110. Bland Altman analysis showed general agreement, with a mean bias of -1.9 mumol/L.
Conclusion: This LC-MS/MS assay is applicable for quantifying urinary oxalate excretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1373/clinchem.2006.075275 | DOI Listing |
J Cell Mol Med
December 2024
Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
High intake of dietary linoleic acid may increase the incidence of many diseases. The aim of this research is to examine the impact of linoleic acid on the damage caused by calcium oxalate kidney stones on renal tubular epithelial cells. Calcium oxalate monohydrate (COM) crystals were prepared and used to treat HK-2 cells, which were further treated with different concentrations of linoleic acid in vitro.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham, LL13 9XS, United Kingdom.
Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFUrolithiasis
December 2024
Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan.
The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.
View Article and Find Full Text PDFBMC Urol
December 2024
Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, 641-0012, Japan.
In calcium stone formers, most stones grow attached to Randall's plaque, which can be identified by measuring the computed tomography (CT) attenuation value of renal papilla. We hypothesized that the CT attenuation value of renal papilla can predict the severity (recurrent or multiple stone former) and recurrence of the stone disease. We retrospectively reviewed the charts of 180 calcium oxalate stone formers who underwent non-contrast CT and 24-hour urine chemistry in our hospital between September 2012 and November 2021.
View Article and Find Full Text PDFUrolithiasis
December 2024
Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
The formation of polycrystalline aggregates in the glomerulus or other components of the urinary system is indisputably the most critical step in the formation of kidney stones and calcium oxalate monohydrate (CaCO·HO) is the most prevalent form. On the other hand, Annexin A1 (ANXA1), a calcium-binding protein, markedly increased on the apical surface of renal cells in CaCO-induced nephrolithiasis. In this regard, we identified the peptide motif responsible for calcium binding and redesigned it into a self-assembling peptide sequence without disturbing its binding selectivity for the CaCO interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!