Rapid detection of avian influenza virus (AIV) infection is critical for control of avian influenza (AI) and for reducing the risk of pandemic human influenza. A double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for this purpose. The method employed a monoclonal antibody (MAb) as the capture antibody and rabbit polyclonal IgG labeled with horseradish peroxidase as the detector antibody, and both antibodies were against type-specific influenza A nucleoprotein (NP). The DAS-ELISA could detect minimally 2.5 ng of influenza viral protein in virus preparations treated with Triton X-100, which is equvilent to 2.5 x 10(2) EID50 virus particles. This DAS-ELISA could detect all 15n AIV subtypes (H1-H15) and did not cross react with other avian pathogens tested. The DAS-ELISA were directly compared with virus isolation (VI) in embryonated chicken eggs, the current standard of influenza virus detection, for 805 chicken samples. The DAS-ELISA results correlated with VI results for 98.6% of these samples, indicating a sensitivity of 97.4% and specificity of 100%. The method was further tested with H5N1 and H9N2 AIV experimentally infected chickens, ducks, and pigeons, as well as field samples obtained from central China in 2005. The DAS-ELISA method has demonstrated application potential as an AIV screening tool and as a supplement for virus isolation in Asia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1637/7473-111605R.1 | DOI Listing |
Sci Immunol
January 2025
Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
Background/objectives: In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved.
Methods: To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors.
Vaccines (Basel)
December 2024
Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
Highly pathogenic (HP) H5Nx and low-pathogenicity (LP) H9N2 avian influenza viruses (AIVs) pose global threats to the poultry industry and public health, highlighting the critical need for a dual-protective vaccine. In this study, we generated a model PR8-derived recombinant H5N2 vaccine strain with hemagglutinin (HA) and neuraminidase (NA) genes from clade 2.3.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China.
Background/objectives: The H7N9 avian influenza virus (AIV) constitutes a novel subtype of influenza virus that has emerged within the past decade. Empirical studies have demonstrated that H7N9 AIV holds the potential to trigger a human pandemic. Vaccines constitute the sole armament available to humanity in combating influenza epidemics.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.
Wild birds and waterfowl serve as the natural reservoirs of avian influenza viruses (AIVs). When AIVs originating from wild birds cross species barriers to infect mammals or humans, they pose a significant threat to public health. The H12 subtype of AIVs primarily circulates in wild birds, with relatively few isolates reported worldwide, and the evolutionary and biological characteristics of H12 subtype AIVs remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!