Eph-ephrin A system regulates murine blastocyst attachment and spreading.

Dev Dyn

Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.

Published: December 2006

Although numerous adhesion molecules are expressed on mammalian endometrial epithelial cells, there have not been any studies of a mechanism to prevent premature attachment of the embryo. In this study, we examined the possible involvement of Eph-ephrin interaction, which can induce repulsive forces. In mice, Eph A1, A2, and A4 were expressed on endometrial epithelial cells and ephrin A1-4 on blastocysts. Reverse transcriptase-polymerase chain reaction showed that mRNA expression of ephrin A1-4 on embryos transiently decreased around the implantation period. Immunohistochemistry demonstrated that the expression of Eph A1 on endometrial epithelial cells and ephrin A1 and A3 expression on embryos decreased at implantation sites. Recombinant Eph A1 reacted with cell the surface of ephrin A-bearing trophectoderm cells. Attachment assays using Eph A1-coated dishes showed that blastocyst attachment was reversibly inhibited by Eph A1. These findings suggest an important role of the Eph-ephrin A system in regulating the initial embryo-maternal contact during the cross-talk period that precedes embryo implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20977DOI Listing

Publication Analysis

Top Keywords

endometrial epithelial
12
epithelial cells
12
eph-ephrin system
8
blastocyst attachment
8
cells ephrin
8
ephrin a1-4
8
decreased implantation
8
eph
5
system regulates
4
regulates murine
4

Similar Publications

Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of various tumors through multiple mechanisms. Among these, HOTTIP (HOXA transcript at the distal tip) stands out as an intriguing candidate with diverse functions in several malignancies, including breast cancer and gynecologic cancers such as ovarian, cervical, and endometrial cancers, which are significant global health concerns. HOTTIP interacts with key signaling pathways associated with these cancers, including Wnt/β-catenin, PI3K/AKT, and MEK/ERK pathways, enhancing their activation and downstream effects.

View Article and Find Full Text PDF

Problem: Endometriosis (EM) is known as a common estrogen-dependent chronic inflammatory disease. Elevated levels of Forkhead box L2 (FOXL2) have been observed in uterine diseases, including EM. However, the molecular mechanism of FOXL2 in EM needs to be further illustrated.

View Article and Find Full Text PDF

Endometrial decidualization resistance (DR) is implicated in various gynecological and obstetric conditions. Here, using a multi-omic strategy, we unraveled the cellular and molecular characteristics of DR in patients who have suffered severe preeclampsia (sPE). Morphological analysis unveiled significant glandular anatomical abnormalities, confirmed histologically and quantified by the digitization of hematoxylin and eosin-stained tissue sections.

View Article and Find Full Text PDF

Background: Metabolic syndrome associated with glucose metabolism plays a pivotal role in tumorigenesis, potentially elevating the risk of endometrial cancer (EC). This study sought to establish a glucose metabolism-related gene (GMRG) signature linked to EC.

Methods: Differential analysis was conducted to identify differentially expressed genes (DEGs) between EC and normal samples from the TCGA-EC dataset.

View Article and Find Full Text PDF

: Cyclophosphamide (CP) is widely used for treating various cancers and autoimmune diseases, but it causes damage to reproductive organs due to oxidative stress (OS) and inflammation. Boric acid (BA) has antioxidant properties that may help reduce OS, which is critical for preserving uterine functionality, particularly for cancer patients considering pregnancy after cryopreservation. This study aimed to determine whether BA could diminish CP-induced toxicity in the uterus and fallopian tubes (FT) using CP-induced toxicity in a rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!