Background: Despite the success of the Edmonton protocol for human islet transplantation, an alternate source of islet tissue must be developed if beta-cell replacement therapy is to see widespread application. Neonatal porcine islets (NPI) represent one potential source of tissue. When human or rodent islets are transplanted, the majority of cells undergo hypoxia-induce apoptosis soon after the grafts are placed in the recipient. In the present study, we investigated whether NPI were similarly sensitive to hypoxia.
Methods: NPI were exposed to hypoxia and hypoxia/reoxygenation using an in vitro hypoxic chamber. Afterwards, viability, frequency of apoptosis, and beta-cell function were evaluated. NPI and adult porcine islets were transplanted into chemically diabetic, immunodeficient mice and graft apoptosis was assessed 24 hours and seven days posttransplant.
Results: NPI demonstrated a remarkable capacity to resist apoptosis and maintain insulin secretion despite severe stresses such as hypoxia/reoxygenation. One day after transplantation, NPI grafts showed limited apoptosis, confined to rare strongly insulin positive cells. In contrast, adult porcine islet grafts underwent widespread apoptosis. Western blotting revealed that NPI express high levels of at least one potent endogenous antiapoptotic protein (XIAP).
Conclusions: The majority of cells within transplanted human islets undergo apoptosis soon after portal infusion. In contrast, NPI have the capacity to resist this early posttransplant apoptosis, with likely reduced antigen release and diminished immune stimulation. NPI appear to contain a population of insulin-low to insulin-negative pre-beta-cells, which are resistant to hypoxia-induced apoptosis and still capable of differentiating into mature beta-cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.tp.0000238677.00750.32 | DOI Listing |
Transpl Int
December 2024
Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.
Xenotransplantation of porcine organs has made remarkable progress towards clinical application. A key factor has been the generation of genetically multi-modified source pigs for xenotransplants, protected against immune rejection and coagulation dysregulation. While efficient gene editing tools and multi-cistronic expression cassettes facilitate sophisticated and complex genetic modifications with multiple gene knockouts and protective transgenes, an increasing number of independently segregating genetic units complicates the breeding of the source pigs.
View Article and Find Full Text PDFSurg Innov
December 2024
LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands.
Background: Intraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets.
View Article and Find Full Text PDFAm J Transplant
November 2024
Isla Technologies, Inc, San Carlos, California, USA. Electronic address:
In this study using a discordant, xenogeneic, transplant model we demonstrate the functionality and safety of the first stent-based bioartificial pancreas (BAP) device implanted endovascularly into an artery, harnessing the high oxygen content in blood to support islet viability. The device is a self-expanding nitinol stent that is coated with a bilayer of polytetrafluoroethylene that forms channels to hold islets embedded in a hydrogel. We completed a 1-month study in the nondiabetic swine model (N = 3) to test the safety of the device and to assess islet functionality after device recovery.
View Article and Find Full Text PDFTranspl Int
November 2024
Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy.
Proc Natl Acad Sci U S A
November 2024
Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, Brussels 1200, Belgium.
To be clinically efficient, beta cell replacement therapies such as pig islet xenotransplantation must ensure sufficient insulin secretion from grafted islets. While protection from host immune reaction is essential for islet engraftment and their subsequent functioning, intrinsic physiological properties of used cells are also a key factor. We have previously shown that islets with adenoviral-mediated expression of a dipeptidyl peptidase-resistant form of glucagon-like-peptide-1 (GLP-1) and a constitutively activated form of type 3 muscarinic receptor (M3R) in their beta cells have greatly improved insulin secretory response to glucose stimulation that is otherwise 4 to 10 times lower than human islets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!