Control architecture for human-robot integration: application to a robotic wheelchair.

IEEE Trans Syst Man Cybern B Cybern

System Engineering and Automation Department, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain.

Published: October 2006

Completely autonomous performance of a mobile robot within noncontrolled and dynamic environments is not possible yet due to different reasons including environment uncertainty, sensor/software robustness, limited robotic abilities, etc. But in assistant applications in which a human is always present, she/he can make up for the lack of robot autonomy by helping it when needed. In this paper, the authors propose human-robot integration as a mechanism to augment/improve the robot autonomy in daily scenarios. Through the human-robot-integration concept, the authors take a further step in the typical human-robot relation, since they consider her/him as a constituent part of the human-robot system, which takes full advantage of the sum of their abilities. In order to materialize this human integration into the system, they present a control architecture, called architecture for human-robot integration, which enables her/him from a high decisional level, i.e., deliberating a plan, to a physical low level, i.e., opening a door. The presented control architecture has been implemented to test the human-robot integration on a real robotic application. In particular, several real experiences have been conducted on a robotic wheelchair aimed to provide mobility to elderly people.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tsmcb.2006.874131DOI Listing

Publication Analysis

Top Keywords

human-robot integration
16
control architecture
12
architecture human-robot
8
robotic wheelchair
8
robot autonomy
8
human-robot
6
integration
5
integration application
4
robotic
4
application robotic
4

Similar Publications

Robotic devices with integrated tactile sensors can accurately perceive the contact force, pressure, sliding, and other tactile information, and they have been widely used in various fields, including human-robot interaction, dexterous manipulation, and object recognition. To address the challenges associated with the initial value drift, and to improve the durability and accuracy of the tactile detection for a robotic dexterous hand, in this study, a flexible tactile sensor is designed with high repeatability by introducing a supporting layer for pre-separation. The proposed tactile sensor has a detection range of 0-5 N with a resolution of 0.

View Article and Find Full Text PDF

Multi-Exoskeleton Performance Evaluation: Integrated Muscle Energy Indices to Determine the Quality and Quantity of Assistance.

Bioengineering (Basel)

December 2024

Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy.

The assessment of realistic work tasks is a critical aspect of introducing exoskeletons to work environments. However, as the experimental task's complexity increases, the analysis of muscle activity becomes increasingly challenging. Thus, it is essential to use metrics that adequately represent the physical human-exoskeleton interaction (pHEI).

View Article and Find Full Text PDF

Background: Autism spectrum disorder poses challenges in social communication and behavior, while Intellectual disabilities are characterized by deficits in cognitive, social, and adaptive skills, frequently accompanied by stereotypies and challenging behaviors. Despite the progress made in autism spectrum disorder research, there is often a lack of research focusing on individuals with co-occurring autism spectrum disorder and intellectual disability. Robot-assisted autism therapies are effective in addressing these needs.

View Article and Find Full Text PDF

The concept of joint attention holds significant importance in human interaction and is pivotal in establishing rapport, understanding, and effective communication. Within social robotics, enhancing user perception of the robot and promoting a sense of natural interaction with robots becomes a central element. In this sense, emulating human-centric qualities in social robots, such as joint attention, defined as the ability of two or more individuals to focus on a common event simultaneously, can increase their acceptability.

View Article and Find Full Text PDF

Advancing teleoperation for legged manipulation with wearable motion capture.

Front Robot AI

December 2024

Intelligent Robotics Research Group, Department of Computer Science, University College London, London, United Kingdom.

The sanctity of human life mandates the replacement of individuals with robotic systems in the execution of hazardous tasks. Explosive Ordnance Disposal (EOD), a field fraught with mortal danger, stands at the forefront of this transition. In this study, we explore the potential of robotic telepresence as a safeguard for human operatives, drawing on the robust capabilities demonstrated by legged manipulators in diverse operational contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!