This paper primarily addresses the usefulness of phase-modulation (PM) noise measurements versus noise figure (NF) measurements in characterizing the merit of an amplifier. The residual broadband (white PM) noise is used as the basis for estimating the NF of an amplifier. We have observed experimentally that many amplifiers show an increase in the broadband noise of 1 to 5 dB as the signal level through the amplifier increases. This effect is linked to input power through the amplifier's nonlinear intermodulation distortion. Consequently, this effect is reduced as linearity is increased. We further conclude that, although NF is sometimes used as a selection criteria for an amplifier for low-level signal, NF yields no information about potentially important close-to-carrier 1/f noise of an amplifier nor broadband noise in the presence of a high-level signal, but a PM noise measurements does. We also have verified experimentally that the single-sideband PM noise floor of an amplifier due to thermal noise is -177 dBc/Hz, relative to a carrier input power of 0 dBm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tuffc.2006.121 | DOI Listing |
Front Genet
December 2024
School of information engineering, Jingdezhen Ceramic University, Jingdezhen, China.
The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.
View Article and Find Full Text PDFIt has been shown that light speckle fluctuations provide a means for noninvasive measurements of cerebral blood flow index (CBFi). While conventional Diffuse Correlation Spectroscopy (DCS) provides marginal brain sensitivity for CBFi in adult humans, new techniques have recently emerged to improve diffuse light throughput and thus, brain sensitivity. Here we further optimize one such approach, interferometric diffusing wave spectroscopy (iDWS), with respect to number of independent channels, camera duty cycle and full well capacity, incident power, noise and artifact mitigation, and data processing.
View Article and Find Full Text PDFUltrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea.
Purpose: Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions.
View Article and Find Full Text PDFOver the past two decades, rapid advancements in magnetic resonance technology have significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), far surpassing its initial capabilities. Beyond mapping brain functional architecture at unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled several novel analytical strategies that can potentially improve the sensitivity and neuronal specificity of fMRI. With small voxels, one can sample from different levels of the vascular hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic changes from parenchymal to pial vessels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!