Adaptive imaging on a diagnostic ultrasound scanner at quasi real-time rates.

IEEE Trans Ultrason Ferroelectr Freq Control

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Published: October 2006

Constructing an ultrasonic imaging system capable of compensating for phase errors in real-time is a significant challenge in adaptive imaging. We present a versatile adaptive imaging system capable of updating arrival time profiles at frame rates of approximately 2 frames per second (fps) with 1-D arrays and up to 0.81 fps for 1.75-D arrays, depending on the desired near-field phase correction algorithm. A novel feature included in this system is the ability to update the aberration profile at multiple beam locations for 1-D arrays. The features of this real-time adaptive imaging system are illustrated in tissue-mimicking phantoms with physical near-field phase screens and evaluated in clinical breast tissue with a 1.75-D array. The contrast-to-noise ratio (CNR) of anechoic cysts was shown to improve dramatically in the tissue-mimicking phantoms. In breast tissue, the width of point-like targets showed significant improvement: a reduction of 26.2% on average. Brightness of these targets, however, marginally decreased by 3.9%. For larger structures such as cysts, little improvement in features and CNR were observed, which is likely a result of the system assuming an infinite isoplanatic patch size for the 1.75-D arrays. The necessary requirements for constructing a real-time adaptive imaging system are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tuffc.2006.115DOI Listing

Publication Analysis

Top Keywords

adaptive imaging
20
imaging system
16
system capable
8
1-d arrays
8
175-d arrays
8
near-field phase
8
real-time adaptive
8
tissue-mimicking phantoms
8
breast tissue
8
system
6

Similar Publications

Pseudolabel guided pixels contrast for domain adaptive semantic segmentation.

Sci Rep

December 2024

The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.

Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels.

View Article and Find Full Text PDF

tumour specific surgery in colon cancer is gaining popularity among colorectal surgeons. Many advocate adapting surgical technique based on preoperative CT staging as not all patients require complete mesocolic excision (CME) and D3 lymphadenectomy. We aimed to assess the sensitivity and specificity of preoperative CT scans in nodal staging and analyse whether inadequate CT staging could have influenced local recurrences.

View Article and Find Full Text PDF

Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression.

View Article and Find Full Text PDF

This study presents a generalized design strategy for novel terahertz-wave polarization space-division multiplexing meta-devices, functioning as multi-polarization generators, modulators, and analyzers. It introduces the spin-decoupled phase control method by combining gradient phase design with circular polarization multiplexing techniques, enabling exceptional flexibility in controlling the polarization directions and spatial distributions of multiple output beams. The meta-device M-4D is significantly demonstrated as proof of concept, which converts an incident linearly polarized wave into four beams with distinct polarization angles.

View Article and Find Full Text PDF

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!