Although the advantages of three-dimensional (3-D) echocardiography have been acknowledged, its application for routine diagnosis is still very limited. This is mainly due to the relatively long acquisition time. Only recently has this problem been addressed with the introduction of new real-time 3-D echo systems. This paper describes the design, characteristics, and capabilities of an alternative concept for rapid 3-D echocardiographic recordings. The presented fast-rotating ultrasound (FRU)-transducer is based on a 64-element phased array that rotates with a maximum speed of 8 Hz (480 rpm). The large bandwidth of the FRU-transducer makes it highly suitable for tissue and contrast harmonic imaging. The transducer presents itself as a conventional phased-array transducer; therefore, it is easily implemented on existing 2-D echo systems, without additional interfacing. The capabilities of the FRU-transducer are illustrated with in-vitro volume measurements, harmonic imaging in combination with a contrast agent, and a preliminary clinical study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tuffc.2006.107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!