Artificial aldolases from peptide dendrimer combinatorial libraries.

Org Biomol Chem

Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland.

Published: September 2006

Peptide dendrimers were investigated as synthetic models for aldolase enzymes. Combinatorial libraries were prepared with aldolase active residues such as lysine and proline placed at the dendrimer core or near the surface. On-bead selection for aldolase activity was carried out using the dye-labelled 1,3-diketone 1a, suitable for covalent trapping of enamine-reactive side-chains, and the fluorogenic enolization probe 6. Aldolase dendrimers catalyzed the aldol reaction of acetone, dihydroxyacetone and cyclohexanone with nitrobenzaldehyde. Much like enzymes, the dendrimers exhibited strong aldolase activity in aqueous medium, but were also active in organic solvent. Dendrimer-catalyzed aldol reactions reached complete conversion in 3 h at 25 degrees C with 1 mol% catalyst and gave aldol products with up to 65% ee. A positive dendritic effect in catalysis was observed with both lysine and proline based aldolase dendrimer catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b607342eDOI Listing

Publication Analysis

Top Keywords

combinatorial libraries
8
lysine proline
8
aldolase activity
8
aldolase
6
artificial aldolases
4
aldolases peptide
4
peptide dendrimer
4
dendrimer combinatorial
4
libraries peptide
4
peptide dendrimers
4

Similar Publications

Glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains challenging to treat due to extensive inter- and intra-tumor heterogeneity. This variability demands combination treatments to improve therapeutic outcomes. A significant obstacle in treating GBM is the expression of O-methylguanine-DNA methyltransferase, a DNA repair enzyme that reduces the efficacy of the standard alkylating agent, temozolomide, in about 50% of patients.

View Article and Find Full Text PDF

PUR-GEN: A web server for automated generation of polyurethane fragment libraries.

Comput Struct Biotechnol J

December 2024

Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland.

The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental.

View Article and Find Full Text PDF

The natural world is a vast reservoir of exceptionally varied and inventive chemical compositions. Natural products are used as initial compounds to create combinatorial libraries by targeted modifications and then by analyzing their structure-activity connections. This stage is regarded as a crucial milestone in drug discovery and development.

View Article and Find Full Text PDF

Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination.

View Article and Find Full Text PDF

The heat shock protein 90 kDa (HSP90) is highly conserved across diverse species, including humans, and upregulated in various cancers. As a result, it has been identified as a promising target for advancing anticancer medicine. The introduction of combinatorial chemistry in drug discovery has emphasized the need to develop new technologies in screening, designing, decoding, synthesizing, and screening combinatorial drug libraries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!