Objective: To assess the contamination level of total and faecal coliforms in water wells and distribution networks, and their association with human health in Gaza Governorate, Gaza Strip.
Methods: Data were obtained from the Palestinian Ministry of Health on contamination of total and faecal coliforms in water wells and distribution networks, and on the incidence of water-related diseases in Gaza Governorate. An interview questionnaire was conducted with 150 residents of Gaza.
Results: The contamination level of total and faecal coliforms exceeded that of the World Health Organization (WHO) limit for water wells and networks. However, the contamination percentages in networks were higher than that in wells. Giardiasis was strongly correlated with faecal coliform contamination in water networks (r=0.7) compared with diarrhoeal diseases and hepatitis A (r=0.3 and 0.1, respectively). Diarrhoeal diseases were the highest self-reported diseases among interviewees in Gaza city. Such diseases were more prevalent among people using municipal water than people using desalinated water and water filtered at home for drinking (OR=1.6). Intermittent water supply and sewage flooding seemed to contribute largely to self-reported diseases. People in Gaza Strip have good knowledge on drinking water contamination, and this is reflected in good practice.
Conclusions: Water quality has deteriorated in Gaza Strip. This may contribute to the prevalence of water-related diseases. Self-reported diseases among interviewees in Gaza City were associated with source of drinking water, intermittent water supply, sewage flooding and age of water, and wastewater networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.puhe.2006.07.026 | DOI Listing |
Nanotechnology
January 2025
University of Arkansas, Fayetteville, AR, Fayetteville, Arkansas, 72701-4002, UNITED STATES.
Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology.
View Article and Find Full Text PDFLangmuir
January 2025
Federal University of Itajubá, Itajubá-MG 37500-903, Brazil.
CuO/CeO and CuO/CeO-LaO catalysts, synthesized with varying CeO and LaO molar ratios (1:1, 1:2, and 2:1), were prepared via the hydrothermal method and tested in the water-gas shift reaction (150-350 °C). LaO addition altered structural properties, reducing surface area and copper dispersion. XANES and in situ XRD confirmed metallic Cu species during reduction and reaction.
View Article and Find Full Text PDFScience
January 2025
Department of Geoinformatics, University of Kashmir, Srinagar, India.
On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Geography, University College London, London, England, United Kingdom.
Evaluating the dynamic co-evolution and feedback mechanisms within socio-ecological systems is crucial for determining the resilience and sustainability of environmental governance strategies. The grass-livestock system, as a complex entity encompassing livestock nutrition, foraging behavior, vegetation ecology, pastoralists' economic income, and policy interventions, indicates that any change in a single element may trigger a chain reaction within the system. This paper uses a system dynamics approach to construct a simulation model of the grass-livestock system in alpine pastoral areas, simulating the long-term dynamic co-evolution of the socio-ecological system in the Qilian Mountains region of China.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
2,2,6,6-Tetramethylpiperidine--oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!