Despite the large number of experimental as well as theoretical investigations available in the literature, some properties of the hydration structure of Sr(II), for example, the coordination number, are still ambiguous. The presented molecular dynamics study based on a most suitable ab initio QM/MM protocol allowed a detailed investigation of structural and dynamical properties of this hydrate, which shows a considerable degree of internal flexebility as well as ligand mobility within the first shell. Despite the high computational effort an exceptionally long QM/MM simulation had to be carried out to obtain sufficient information to investigate first shell ligand exchange reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0638033 | DOI Listing |
Molecules
June 2024
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
Solid electrolyte materials with high structural stability and excellent proton conductivity (σ) have long been a popular and challenging research topic in the fuel cell field. This problem can be addressed because of the crystalline metal-organic frameworks' (MOFs') high structural stability, adjustable framework composition, and dense H-bonded networks. Herein, one highly stable Sr(II) MOF, {[Sr(Htmidc)(HO)]·4HO} () (Htmidc = 2-(1H-tetrazolium-1-methylene)-1H-imidazole-4,5-dicarboxylic acid) was successfully fabricated, which was structurally characterized by single-crystal X-ray diffraction and electrochemically examined by the AC impedance determination.
View Article and Find Full Text PDFChemosphere
August 2024
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium.
Ladle slag, a by-product of steelmaking, presents a valuable strategy for waste reduction and valorization in wastewater treatment. This work demonstrates the successful simultaneous removal of Al(III), B(III), Ba(II), Cr(III), Mg(II), Sr(II), Pb(II), and Zn(II), from electroplating wastewater by ladle slag. First, Cr(III) and Pb(II) removals were evaluated in single synthetic systems by analyzing the influence of pH, temperature, and ladle slag dosage.
View Article and Find Full Text PDFDevelopment of useful all-around materials which can quickly and efficiently adsorb radionuclides in response to environmental radioactive contamination is an urgent research objective. In response to this need, our team developed a simple preparation method for stable sodium titanates which can serve as efficient agents for removal of radionuclides from water. With an emphasis on an environmentally friendly synthesis, the resulting materials were defined by a range of means and methods measuring pH, ionic strength, contact time or metal ion concentration in order to assess their potential for use and applications as sorbents.
View Article and Find Full Text PDFAnal Methods
November 2023
Instituto de Química, Universidade Estadual de Campinas (UNICAMP), PO Box 6154, 13083-970, Campinas, Brazil.
Laser-induced breakdown spectroscopy (LIBS) was applied to the determination of scaling ions in oilfield-produced water employing underwater measurements. Initially, the stability of plasma was verified using four different optical setups and expansion of the laser beam, and a combination of an achromatic lens with a meniscus lens were necessary to stabilize the plasma. Preliminary experiments demonstrated that only the determinations of Ca(II) and Sr(II) ions were feasible while the signal for the Mg(II) ion was absent and the sensitivity for Ba(II) was very low.
View Article and Find Full Text PDFMolecules
October 2022
School of Nuclear Science and Technology, University of South China, HengYang 421001, China.
Sulfonic resins are highly efficient cation exchangers widely used for metal removal from aqueous solutions. Herein, a new sulfonation process is designed for the sulfonation of algal/PEI composite (A*PEI, by reaction with 2-propylene-1-sulfonic acid and hydroxylamine-O-sulfonic acid). The new sulfonated functionalized sorbent (SA*PEI) is successfully tested in batch systems for strontium recovery first in synthetic solutions before investigating with multi-component solutions and final validation with seawater samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!