Sr(II) in water: A labile hydrate with a highly mobile structure.

J Phys Chem B

Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.

Published: October 2006

Despite the large number of experimental as well as theoretical investigations available in the literature, some properties of the hydration structure of Sr(II), for example, the coordination number, are still ambiguous. The presented molecular dynamics study based on a most suitable ab initio QM/MM protocol allowed a detailed investigation of structural and dynamical properties of this hydrate, which shows a considerable degree of internal flexebility as well as ligand mobility within the first shell. Despite the high computational effort an exceptionally long QM/MM simulation had to be carried out to obtain sufficient information to investigate first shell ligand exchange reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0638033DOI Listing

Publication Analysis

Top Keywords

srii water
4
water labile
4
labile hydrate
4
hydrate highly
4
highly mobile
4
mobile structure
4
structure despite
4
despite large
4
large number
4
number experimental
4

Similar Publications

Solid electrolyte materials with high structural stability and excellent proton conductivity (σ) have long been a popular and challenging research topic in the fuel cell field. This problem can be addressed because of the crystalline metal-organic frameworks' (MOFs') high structural stability, adjustable framework composition, and dense H-bonded networks. Herein, one highly stable Sr(II) MOF, {[Sr(Htmidc)(HO)]·4HO} () (Htmidc = 2-(1H-tetrazolium-1-methylene)-1H-imidazole-4,5-dicarboxylic acid) was successfully fabricated, which was structurally characterized by single-crystal X-ray diffraction and electrochemically examined by the AC impedance determination.

View Article and Find Full Text PDF

Ladle slag, a by-product of steelmaking, presents a valuable strategy for waste reduction and valorization in wastewater treatment. This work demonstrates the successful simultaneous removal of Al(III), B(III), Ba(II), Cr(III), Mg(II), Sr(II), Pb(II), and Zn(II), from electroplating wastewater by ladle slag. First, Cr(III) and Pb(II) removals were evaluated in single synthetic systems by analyzing the influence of pH, temperature, and ladle slag dosage.

View Article and Find Full Text PDF

Development of useful all-around materials which can quickly and efficiently adsorb radionuclides in response to environmental radioactive contamination is an urgent research objective. In response to this need, our team developed a simple preparation method for stable sodium titanates which can serve as efficient agents for removal of radionuclides from water. With an emphasis on an environmentally friendly synthesis, the resulting materials were defined by a range of means and methods measuring pH, ionic strength, contact time or metal ion concentration in order to assess their potential for use and applications as sorbents.

View Article and Find Full Text PDF

Underwater determination of calcium and strontium ions in oilfield produced water by laser-induced breakdown spectroscopy (LIBS).

Anal Methods

November 2023

Instituto de Química, Universidade Estadual de Campinas (UNICAMP), PO Box 6154, 13083-970, Campinas, Brazil.

Laser-induced breakdown spectroscopy (LIBS) was applied to the determination of scaling ions in oilfield-produced water employing underwater measurements. Initially, the stability of plasma was verified using four different optical setups and expansion of the laser beam, and a combination of an achromatic lens with a meniscus lens were necessary to stabilize the plasma. Preliminary experiments demonstrated that only the determinations of Ca(II) and Sr(II) ions were feasible while the signal for the Mg(II) ion was absent and the sensitivity for Ba(II) was very low.

View Article and Find Full Text PDF

Sulfonic resins are highly efficient cation exchangers widely used for metal removal from aqueous solutions. Herein, a new sulfonation process is designed for the sulfonation of algal/PEI composite (A*PEI, by reaction with 2-propylene-1-sulfonic acid and hydroxylamine-O-sulfonic acid). The new sulfonated functionalized sorbent (SA*PEI) is successfully tested in batch systems for strontium recovery first in synthetic solutions before investigating with multi-component solutions and final validation with seawater samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!