Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This is the first report of in situ SER spectra of chemical species adsorbed on a Ag/room temperature ionic liquid (RTIL) interface. We have investigated the dependence of the SERS intensity of the RTIL derived from 1-n-butyl-3-methylimidazolium hexafluorophosfate (BMIPF6) adsorbed on a silver electrode. It has been shown that the BMI+ adsorbs on the silver electrode for potentials more negative than -0.4 V vs a Pt quasireference electrode (PQRE). In the -0.4 to -1.0 V potential range the SER spectra are similar to the Raman spectrum of the RTIL BMIPF6. At potentials more negative than -1.0 V some imidazolium ring vibrational modes and N-CH3 vibrations are enhanced, suggesting that the imidazolium ring is parallel to the surface and for potentials <-2.8 V the BMI+ is reduced to the BMI carbene. The potential dependence of the SERS intensities of Py adsorbed on a silver electrode in BMIPF6 has also been investigated. The results have shown that at potentials less negative than -0.8 V (vs PQRE) Py adsorbs at an end-on configuration forming an Ag-N bond. In the -0.9 to -1.4 V potential range Py molecules lie flat on the electrode surface and at potentials <-1.4 V Py is replaced by the BMI+. The electrochemical and SERS results have shown that Py has the effect of changing the oxidation of silver in that medium as well as the reduction of BMI+ to the BMI carbene. In the presence of Py the BMI+ reduction is observed at potentials near -2.4 V. The Ag electrode has presented SERS activity from 0.0 to -3.0 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0643348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!