This work is aimed at a predictive description of the thermodynamic properties of actinide(III) salt solutions at high concentration and 25 degrees C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1:1 and also 1:2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide(III) cation: dysprosium(III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol.kg-1) for a study of the microscopic behavior of DyCl3 binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0609636 | DOI Listing |
PLoS One
January 2025
Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
In this research, the effect of seed halopriming with plasma activated water (PAW) on wheat germination parameters have been studied. Response surface methodology was used to investigate the effect of three factors including: 1) type of water (distilled water, 0.2 and 0.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Heilongjiang Transportation Information and Science Research Center, Harbin 150080, China.
The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China.
The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
The interactions between cellulose nanocrystals and six different polymers (three anionic, two non-ionic, and one cationic) were investigated using rheological measurements of aqueous solutions of nanocrystals and polymers. The experimental viscosity data could be described adequately by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) with concentrations of nanocrystals and polymers were determined for different combinations of nanocrystals and polymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!