Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes.

Mol Genet Genomics

Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile.

Published: January 2007

AI Article Synopsis

  • The study investigates the structure and effects of repetitive elements in the genome of the lignin-degrading fungus, Phanerochaete chrysosporium.
  • Researchers discovered multiple copies of a non-autonomous class II element (pce1) and a retrotransposon (pcret1) that impact the transcription of genes related to enzymes like glucosyltransferase and cytochrome P450.
  • The findings reveal that these repetitive elements lead to incomplete transcripts and are mainly confined to specific alleles, highlighting a complex interaction affecting gene expression in this species.

Article Abstract

We describe the structure, organization, and transcriptional impact of repetitive elements within the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Searches of the P. chrysosporium genome revealed five copies of pce1, a ~1,750-nt non-autonomous, class II element. Alleles encoding a putative glucosyltransferase and a cytochrome P450 harbor pce insertions and produce incomplete transcripts. Class I elements included pcret1, an intact 8.14-kb gypsy-like retrotransposon inserted within a member of the multicopper oxidase gene family. Additionally, we describe a complex insertion of nested transposons within another putative cytochrome P450 gene. The disrupted allele lies within a cluster of >14 genes, all of which encode family 64 cytochrome P450s. Components of the insertion include a disjoint copia-like element, pcret3, the pol domain of a second retroelement, pcret2, and a duplication of an extended ORF of unknown function. As in the case of the pce elements, pcret1 and pcret2/3 insertions are confined to single alleles, transcripts of which are truncated. The corresponding wild-type alleles are apparently unaffected. In aggregate, P. chrysosporium harbors a complex array of repetitive elements, at least five of which directly influence expression of genes within families of structurally related sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-006-0167-zDOI Listing

Publication Analysis

Top Keywords

repetitive elements
12
transcriptional impact
8
phanerochaete chrysosporium
8
cytochrome p450
8
elements
5
structure transcriptional
4
impact divergent
4
divergent repetitive
4
elements inserted
4
inserted phanerochaete
4

Similar Publications

A mobile genetic element-derived primase-polymerase harbors multiple activities implicated in DNA replication and repair.

Nucleic Acids Res

January 2025

State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.

Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.

View Article and Find Full Text PDF

Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.

View Article and Find Full Text PDF

Stinging nettles () have a long history of association with human civilization, having been used as a source of textile fibers, food and medicine. Here, we present a chromosome-level, phased genome assembly for a diploid female clone of from Romania. Using a combination of PacBio HiFi, Oxford Nanopore, and Illumina sequencing, as well as Hi-C long-range interaction data (using a novel Hi-C protocol presented here), we assembled two haplotypes of 574.

View Article and Find Full Text PDF

Chromosome-level genome assembly of Megachile sculpturalis Smith (Hymenoptera, Apoidea, Megachilidae).

Sci Data

January 2025

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Megachile sculpturalis Smith, 1853 native to East Asia, is an important solitary bee species that has invaded both Europe and the United States. This study provides the first chromosome-level genome assembly of M. sculpturalis using a combination of Nanopore long reads, Illumina short reads, and Hi-C data.

View Article and Find Full Text PDF

Repetitive DNA contributes significantly to plant genome size, adaptation, and evolution. However, little is understood about the transcription of repeats. This is addressed here in the plant green foxtail millet (Setaria viridis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!