Tagging of avidin immobilized beads with biotinylated YAG:Ce3+ nanocrystal phosphor.

Anal Bioanal Chem

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.

Published: November 2006

YAG:Ce3+ nanoparticles 9.5+/-1.2 nm in diameter have been synthesized from aluminium isopropoxide and acetates of yttrium and cerium in 1,4-butanediol (1,4-BD) by autoclave treatment at 300 degrees C for 2 h. After replacing 1,4-BD by ultrapure water, NH2 groups were introduced on the surface of YAG:Ce3+ nanoparticles by addition of 3-aminopropyltrimethoxysilane then biotinylation with sulfo-NHS-LC-biotin. We demonstrated that avidin immobilized beads are tagged by biotinylated YAG:Ce3+ nanoparticles by the selective avidin-biotin interaction, furnishing a green fluorescent image on excitation with blue light. This result indicates that YAG:Ce3+ nanoparticle phosphors have much potential in biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-006-0814-6DOI Listing

Publication Analysis

Top Keywords

yagce3+ nanoparticles
12
avidin immobilized
8
immobilized beads
8
biotinylated yagce3+
8
yagce3+
5
tagging avidin
4
beads biotinylated
4
yagce3+ nanocrystal
4
nanocrystal phosphor
4
phosphor yagce3+
4

Similar Publications

Development of a Zeolitic Imidazolate Framework Based Superhydrophobic Surface with Abrasion Resistance, Corrosion Protection, and Anti-icing.

Langmuir

March 2025

Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.

Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.

View Article and Find Full Text PDF

Infected bone defects show a significant reduction in neovascularization during the healing process, primarily due to persistent bacterial infection and immune microenvironmental disorders. Existing treatments are difficult to simultaneously meet the requirements of antibacterial and anti-inflammatory treatments for infected bone defects, which is a key clinical therapeutic challenge that needs to be addressed. In this study, a conductive hydrogel based on copper nanoparticles was developed for controlling bacterial infection and remodeling the immune microenvironment.

View Article and Find Full Text PDF

Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells.

View Article and Find Full Text PDF

Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.

View Article and Find Full Text PDF

Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!