Evaluating the performance of microarray segmentation algorithms.

Bioinformatics

Institute of Signal Processing, Tampere University of Technology PO Box 553, 33101 Tampere, Finland.

Published: December 2006

Motivation: Although numerous algorithms have been developed for microarray segmentation, extensive comparisons between the algorithms have acquired far less attention. In this study, we evaluate the performance of nine microarray segmentation algorithms. Using both simulated and real microarray experiments, we overcome the challenges in performance evaluation, arising from the lack of ground-truth information. The usage of simulated experiments allows us to analyze the segmentation accuracy on a single pixel level as is commonly done in traditional image processing studies. With real experiments, we indirectly measure the segmentation performance, identify significant differences between the algorithms, and study the characteristics of the resulting gene expression data.

Results: Overall, our results show clear differences between the algorithms. The results demonstrate how the segmentation performance depends on the image quality, which algorithms operate on significantly different performance levels, and how the selection of a segmentation algorithm affects the identification of differentially expressed genes.

Availability: Supplementary results and the microarray images used in this study are available at the companion web site http://www.cs.tut.fi/sgn/csb/spotseg/

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btl502DOI Listing

Publication Analysis

Top Keywords

microarray segmentation
12
performance microarray
8
segmentation algorithms
8
segmentation performance
8
differences algorithms
8
segmentation
7
algorithms
7
microarray
5
performance
5
evaluating performance
4

Similar Publications

Imaging-based spatial transcriptomics (ST) is evolving rapidly as a pivotal technology in studying the biology of tumors and their associated microenvironments. However, the strengths of the commercially available ST platforms in studying spatial biology have not been systematically evaluated using rigorously controlled experiments. In this study, we used serial 5-m sections of formalin-fixed, paraffin-embedded surgically resected lung adenocarcinoma and pleural mesothelioma tumor samples in tissue microarrays to compare the performance of the single cell ST platforms CosMx, MERFISH, and Xenium (uni/multi-modal) platforms in reference to bulk RNA sequencing, multiplex immunofluorescence, GeoMx Digital Spatial Profiler, and hematoxylin and eosin staining data for the same samples.

View Article and Find Full Text PDF

This retrospective cohort study aimed to define the optimal Regions of Homozygosity (ROH) size cut-offs for prediction of morbidity, based on 13 483 Chromosomal Microarray Analyses (CMA). Receiver operating characteristic (ROC) curves were generated, and area under the curve (AUC) was used to assess the predictive capability of total ROH percentage (TRPS), ROH number and ROH segment size in distinguishing between healthy (n=6,196) and affected (n=6,839) cohorts. The metrics were examined for telomeric and interstitial segments, distinct TRPS categories, and across different ancestral origins.

View Article and Find Full Text PDF

The Rice Online Expression Profiles Array Database Version 2 (ROADv2): An Interactive Atlas for Rice Functional Genomics.

Rice (N Y)

December 2024

Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea.

The Rice Online expression profiles Array Database version 2 (ROADv2; https://roadv2.khu.ac.

View Article and Find Full Text PDF

Long-read sequencing can often overcome the deficiencies in routine microarray or short-read technologies in detecting complex genomic rearrangements. Here we used Pacific Biosciences circular consensus sequencing to resolve complex rearrangements in two patients with rare genetic anomalies. Copy number variants (CNVs) identified by clinical microarray -chr8p deletion and chr8q duplication in patient 1, and interstitial deletions of chr18q in patient 2-were suggestive of underlying rearrangements.

View Article and Find Full Text PDF

Background: The development of the testes is a tightly regulated process, requiring the coordination of multiple genes. Mutations in these genes can result in 46,XY gonadal dysgenesis. , located at Xp21, is a gene expressed in the developing adrenals, gonads, hypothalamus, and pituitary gland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!