A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pre-steady state electrogenic events of Ca2+/H+ exchange and transport by the Ca2+-ATPase. | LitMetric

Native or recombinant SERCA (sarco(endo)plasmic reticulum Ca(2+) ATPase) was adsorbed on a solid supported membrane and then activated with Ca(2+) and ATP concentration jumps through rapid solution exchange. The resulting electrogenic events were recorded as electrical currents flowing along the external circuit. Current transients were observed following Ca(2+) jumps in the absence of ATP and following ATP jumps in the presence of Ca(2+). The related charge movements are attributed to Ca(2+) reaching its binding sites in the ground state of the enzyme (E(1)) and to its vectorial release from the enzyme phosphorylated by ATP (E(2)P). The Ca(2+) concentration and pH dependence as well as the time frames of the observed current transients are consistent with equilibrium and pre-steady state biochemical measurements of sequential steps within a single enzymatic cycle. Numerical integration of the current transients recorded at various pH values reveal partial charge compensation by H(+) in exchange for Ca(2+) at acidic (but not at alkaline) pH. Most interestingly, charge movements induced by Ca(2+) and ATP vary over different pH ranges, as the protonation probability of residues involved in Ca(2+)/H(+) exchange is lower in the E(1) than in the E(2)P state. Our single cycle measurements demonstrate that this difference contributes directly to the reduction of Ca(2+) affinity produced by ATP utilization and results in the countertransport of two Ca(2+) and two H(+) within each ATPase cycle at pH 7.0. The effects of site-directed mutations indicate that Glu-771 and Asp-800, within the Ca(2+) binding domain, are involved in the observed Ca(2+)/H(+) exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M606040200DOI Listing

Publication Analysis

Top Keywords

ca2+/h+ exchange
12
current transients
12
ca2+
11
pre-steady state
8
electrogenic events
8
ca2+ atpase
8
ca2+ atp
8
charge movements
8
atp
6
exchange
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!