Recombinant interferon-beta (IFN-beta) protein is used successfully for the treatment of multiple sclerosis (MS). Gene therapy might be an alternative approach to overcome drawbacks occurring with IFN-beta protein therapy. A critical issue in developing a new approach is detection of biologically active IFN-beta in preclinical models. The goal of the present study was to determine if Mx1 and IP-10, which are known to be activated after IFN-beta treatment in humans, can be used as biomarkers in mice. In three in vivo experiments, the correlation between different methods of murine IFN-beta (MuIFN-beta) delivery and biomarker induction was studied: (1) bolus protein delivery by intravenous (i.v.) or intramuscular (i.m.) injection, (2) gene-based delivery of IFN- beta by i.m. injection of plasmid DNA, followed by electroporation, and (3) gene-based delivery of IFN-beta by i.m. injection of adenovirus-associated type 1 (AAV1). Short-term induction of Mx1 mRNA and IP-10 was observed after treatment with bolus MuIFN-beta protein. Long-term induction of both biomarkers was observed after IFN-beta plasmid DNA delivery or when AAV1 was used as the vector. The experiments demonstrate that gene-based delivery provides sustained levels of IFN-beta compared with bolus protein injection and that Mx1 RNA and IP-10 can be used to monitor biologically active circulating plasma MuIFN-beta protein in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jir.2006.26.699DOI Listing

Publication Analysis

Top Keywords

gene-based delivery
16
ifn-beta
9
mx1 ip-10
8
ifn-beta protein
8
biologically active
8
bolus protein
8
plasmid dna
8
muifn-beta protein
8
delivery
7
protein
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!