We have synthesised a library of dihydroimidazophenanthridinium cations (DIPs) with large structural diversity (1-29) using a "one-pot" approach. The DNA binding constants of DIPs range from 2x10(4) to 1.3x10(5) M(-1), and the free energies for binding range from -5.9 to -6.40 kcal mol(-1). Viscosity measurements demonstrated that the binding of the compounds caused DNA lengthening, thus signifying binding by intercalation. The cytotoxicities of the compounds were determined by tetrazolium dye-based microtitration assays and showed a large range of values (0.09-11.7 microM). Preliminary molecular modelling studies of the DNA-DIP interactions suggested that the DIP moieties can interact with DNA by intercalation, and some R groups might facilitate binding by minor-groove binding. The results provide insight into how to design biologically active DNA binding agents that can interact in these ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.200600205 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFChem Biodivers
January 2025
SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.
This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India.
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite , six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!