A unique N-linked glycosylation motif (Asn(79)-Tyr-Thr) was found in the sequence of type-A feruloyl esterases from Aspergillus spp. To clarify the function of the flap, the role of N-linked oligosaccharides located in the flap region on the biochemical properties of feruloyl esterase (AwFAEA) from Aspergillus awamori expressed in Pichia pastoris was analyzed by removing the N-linked glycosylation recognition site by site-directed mutagenesis. N79 was replaced with A or Q. N-glycosylation-free N79A and N79Q mutant enzymes had lower activity than that of the glycosylated recombinant AwFAEA wild-type enzyme toward alpha-naphthylbutyrate (C4), alpha-naphthylcaprylate (C8), and phenolic acid methyl esters. Kinetic analysis of the mutant enzymes indicated that the lower catalytic efficiency was due to a combination of increased Km and decreased k(cat) for N79A, and to a considerably decreased k(cat) for N79Q. N79A and N79Q mutant enzymes also exhibited considerably reduced thermostability relative to the wild-type.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.60207DOI Listing

Publication Analysis

Top Keywords

mutant enzymes
12
n-linked oligosaccharides
8
aspergillus awamori
8
feruloyl esterase
8
n-linked glycosylation
8
n79a n79q
8
n79q mutant
8
decreased kcat
8
n-linked
4
oligosaccharides aspergillus
4

Similar Publications

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

Unlabelled: Human norovirus (HuNoV) is a leading cause of gastroenteritis worldwide and is associated with significant morbidity, mortality, and economic impact. There are currently no licensed antiviral drugs for the treatment of HuNoV-associated gastroenteritis. The HuNoV protease plays a critical role in the initiation of virus replication by cleaving the polyprotein.

View Article and Find Full Text PDF

Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation.

View Article and Find Full Text PDF

Characterization of the oxygen-tolerant formate dehydrogenase from .

Front Microbiol

January 2025

Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany.

Fixation of CO into the organic compound formate by formate dehydrogenases (FDHs) is regarded as the oldest autotrophic process on Earth. It has been proposed that an FDH-dependent CO fixation module could support CO assimilation even in photoautotrophic organisms. In the present study, we characterized FDH from (FDH) due to its ability to reduce CO under aerobic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!