We report the interactions amongst 20 proteins that specify their assembly to the centromere-kinetochore complex in human cells. Centromere protein (CENP)-A is at the top of a hierarchy that directs three major pathways, which are specified by CENP-C, -I, and Aurora B. Each pathway consists of branches that intersect to form nodes that may coordinate the assembly process. Complementary EM studies found that the formation of kinetochore trilaminar plates depends on the CENP-I/NUF2 branch, whereas CENP-C and Aurora B affect the size, shape, and structural integrity of the plates. We found that hMis12 is not constitutively localized at kinetochores, and that it is not essential for recruiting CENP-I. Our studies also revealed that kinetochores in HeLa cells contain an excess of CENP-A, of which approximately 10% is sufficient to promote the assembly of normal levels of kinetochore proteins. We elaborate on a previous model that suggested kinetochores are assembled from repetitive modules (Zinkowski, R.P., J. Meyne, and B.R. Brinkley. 1991. J. Cell Biol. 113:1091-110).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064494PMC
http://dx.doi.org/10.1083/jcb.200606020DOI Listing

Publication Analysis

Top Keywords

human cells
8
cenp-c aurora
8
mapping assembly
4
assembly pathways
4
pathways formation
4
formation trilaminar
4
trilaminar kinetochore
4
kinetochore plates
4
plates human
4
cells report
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!