Attachment of chromosomes to the mitotic spindle has been proposed to require dynamic microtubules that randomly search three-dimensional space and become stabilized upon capture by kinetochores. In this study, we test this model by examining chromosome capture in Saccharomyces cerevisiae mutants with attenuated microtubule dynamics. Although viable, these cells are slow to progress through mitosis. Preanaphase cells contain a high proportion of chromosomes that are attached to only one spindle pole and missegregate in the absence of the spindle assembly checkpoint. Measurement of the rates of chromosome capture and biorientation demonstrate that both are severely decreased in the mutants. These results provide direct evidence that dynamic microtubules are critical for efficient chromosome capture and biorientation and support the hypothesis that microtubule search and capture plays a central role in assembly of the mitotic spindle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064488 | PMC |
http://dx.doi.org/10.1083/jcb.200606021 | DOI Listing |
Nat Commun
January 2025
Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.
Individual enhancers are defined as short genomic regulatory elements, bound by transcription factors, and able to activate cell-specific gene expression at a distance, in an orientation-independent manner. Within mammalian genomes, enhancer-like elements may be found individually or within clusters referred to as locus control regions or super-enhancers (SEs). While these behave similarly to individual enhancers with respect to cell specificity, distribution and distance, their orientation-dependence has not been formally tested.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
Haplotyped-resolved phased assemblies aim to capture the full allelic diversity in heterozygous and polyploid species to enable accurate genetic analyses. However, building non-collapsed references still presents a challenge. Here, we used long-range interaction Hi-C reads (high-throughput chromatin conformation capture) and HiFi PacBio reads to assemble the genome of the apomictic cultivar Basilisks from Urochloa decumbens (2n = 4x = 36), an outcrossed tetraploid Paniceae grass widely cropped to feed livestock in the tropics.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
Richter syndrome (RS), characterized by aggressive lymphoma arising from chronic lymphocytic leukaemia (CLL), presents a poor response to treatment and grim prognosis. To elucidate RS mechanisms, paired samples from a patient with DLBCL-RS were subjected to single-cell RNA sequencing (scRNA-seq) and high-throughput chromosome conformation capture (Hi-C) sequencing. Over 10,000 cells were profiled via scRNA-seq, revealing the comprehensive B cell transformation in RS.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.
Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.
Cell Oncol (Dordr)
January 2025
College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China.
Purpose: Intrahepatic cholangiocarcinoma (ICC) is a common primary hepatic tumors with a 5-year survival rate of less than 20%. Therefore, it is crucial to elucidate the molecular mechanisms of ICC. Recently, the advance of high-throughput chromosome conformation capture (Hi-C) technology help us look insight into the three-dimensional (3D) genome structure variation during tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!