APOBEC3G (A3G) and related deoxycytidine deaminases are potent intrinsic antiretroviral factors. A3G is expressed either as an enzymatically active low-molecular-mass (LMM) form or as an enzymatically inactive high-molecular-mass (HMM) ribonucleoprotein complex. Resting CD4 T cells exclusively express LMM A3G, where it functions as a powerful postentry restriction factor for HIV-1. Activation of CD4 T cells promotes the recruitment of LMM A3G into 5- to 15-MDa HMM complexes whose function is unknown. Using tandem affinity purification techniques coupled with MS, we identified Staufen-containing RNA-transporting granules and Ro ribonucleoprotein complexes as specific components of HMM A3G complexes. Analysis of RNAs in these complexes revealed Alu and small Y RNAs, two of the most prominent nonautonomous mobile genetic elements in human cells. These retroelement RNAs are recruited into Staufen-containing RNA-transporting granules in the presence of A3G. Retrotransposition of Alu and hY RNAs depends on the reverse transcriptase machinery provided by long interspersed nucleotide elements 1 (L1). We now show that A3G greatly inhibits L1-dependent retrotransposition of marked Alu retroelements not by inhibiting L1 function but by sequestering Alu RNAs in cytoplasmic HMM A3G complexes away from the nuclear L1 enzymatic machinery. These findings identify nonautonomous Alu and hY retroelements as natural cellular targets of A3G and highlight how different forms of A3G uniquely protect cells from the threats posed by exogenous retroviruses (LMM A3G) and endogenous retroelements (HMM A3G).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592537 | PMC |
http://dx.doi.org/10.1073/pnas.0604524103 | DOI Listing |
bioRxiv
September 2024
Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA.
APOBEC3 (or A3) enzymes have emerged as potential therapeutic targets due to their role in introducing heterogeneity in viruses and cancer, often leading to drug resistance. Inhibiting these enzymes has remained elusive as initial phosphodiester (PO) linked DNA based inhibitors lack stability and potency. We have enhanced both potency and nuclease stability, of 2'-deoxy-zebularine (dZ), substrate-based oligonucleotide inhibitors for two critical A3's: A3A and A3G.
View Article and Find Full Text PDFFront Genet
August 2024
Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China.
Introduction: Gluten quality is one of the most important traits of the common wheat ( L.). In Chinese wheat production, Yannong series cultivars/derivative lines possess unique characteristics and play an important role in both yield and quality contribution.
View Article and Find Full Text PDFFront Immunol
September 2024
Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
Different host proteins target different HIV proteins and antagonize their functions, depending on the stage of the HIV life cycle and the stage of infection. Concurrently, HIV proteins also target and antagonize various different host proteins to facilitate HIV replication within host cells. The preceding quite specific area of knowledge in HIV pathogenesis, however, remains insufficiently understood.
View Article and Find Full Text PDFViruses
July 2024
Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear.
View Article and Find Full Text PDFHeliyon
June 2024
Tongji University School of Medicine, Tongji University, Shanghai 200120, China.
SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!