The mechanism of complex formation between DNA and oppositely charged dioctadecyldimethylammonium bromide/dioleoyl phosphatidylethanolamine (DODAB/DOPE) and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/DOPE mixed liposomes, as well as the physico-chemical properties of DNA-mixed liposome complexes, were examined. Fluorescence microscopy showed that the interaction between DNA and oppositely charged mixed liposomes started at very low liposome concentrations and induced a discrete coil-globule transition in individual DNA molecules. The DNA size distribution was bimodal in a wide range of liposome concentrations. The critical concentration of the cationic lipid needed for the complete compaction of single DNA molecules depended on the composition of the charged mixed DODAB/DOPE and DOTAP/DOPE liposomes. Cryogenic transmission electron microscopy (cryo-TEM) observations of DNA complexes with mixed liposomes revealed that the lamellar packing of lipid molecules was typical for the complexes formed from the cationic lipid-enriched mixtures, while inverted hexagonal arrays were found for the neutral lipid-enriched complexes. The microstructures of the complexes were also examined with the use of the small-angle X-ray scattering (SAXS) technique, which confirmed the results obtained by cryo-TE microscopy and enabled the quantitative characterization of lipid packaging in the complexes with DNA macromolecules. We also found that the introduction of the neutral lipid into the complexes between DNA and oppositely charged lipids, DODAB and DOTAP, moderately increased the thermal stability of the complexes and changed the quantitative characteristics of the melting profiles of the complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0301-4622(99)00088-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!