Background & Aims: Accumulating evidence indicates that acetaldehyde (AcCHO) is one of the main mediators of fibrogenesis in alcoholic liver disease. AcCHO stimulates synthesis of fibrillar collagens in hepatic stellate cells, but the molecular events directly involved in the activation of collagen genes are debatable.

Methods: Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that is expressed in stellate cells, and its activation by specific ligands inhibits collagen synthesis. In this study, we evaluated the effects of AcCHO on PPARgamma transcriptional activity and its correlation with the AcCHO-induced collagen synthesis in hepatic stellate cells.

Results: AcCHO treatment inhibited ligand-dependent and -independent PPARgamma transcriptional activity, and this effect was correlated with an increased phosphorylation of a mitogen-activated protein kinase site at serine 84 of the human PPARgamma. Transfection of the PPARgammaSer84Ala mutant completely prevented the effect of AcCHO on PPARgamma activity and in parallel abrogated the induction of collagen gene expression by AcCHO. The effect of AcCHO on PPARgamma activity and phosphorylation was blocked by extracellular signal-regulated kinase (ERK) 1/2 and protein kinase C (PKC)delta inhibitors as well as by catalase, suggesting that hydrogen peroxide is involved in the molecular cascade responsible for PPARgamma phosphorylation via activation of the PKCdelta/ERK pathway. Furthermore, inhibition of c-Abl completely abrogated the effect of AcCHO on either PPARgamma function or collagen synthesis; in addition, expression of the PPARgammaSer84Ala mutant prevented the profibrogenic signals mediated by c-Abl activation.

Conclusions: Our results showed that the induction of collagen expression by AcCHO in stellate cells is dependent on PPARgamma phosphorylation induced by a hydrogen peroxide-mediated activation of the profibrogenic c-Abl signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2006.08.009DOI Listing

Publication Analysis

Top Keywords

stellate cells
16
accho ppargamma
16
hepatic stellate
12
collagen synthesis
12
ppargamma
10
accho
9
ppargamma transcriptional
8
transcriptional activity
8
protein kinase
8
ppargammaser84ala mutant
8

Similar Publications

Hepatic stellate cells (HSCs) are key drivers of local fibrosis. Adiponectin, conventionally thought of as an adipokine, is also expressed in quiescent HSCs. However, the impact of its local expression on the progression of liver fibrosis remains unclear.

View Article and Find Full Text PDF

Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells.

Nat Commun

January 2025

Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.

Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions.

View Article and Find Full Text PDF

Although therapies based on direct-acting antivirals (DAAs) effectively eradicate hepatitis C virus (HCV) in patients, there is still a high risk of liver fibrosis even after a sustained virological response. Therefore, it is of great clinical importance to understand the mechanism of potential factors that promote liver fibrosis after virological cure by treatment with DAAs. Here, we found that tubulointerstitial nephritis antigen-like 1 (TINAGL1) is significantly increased in HCV-infected hepatocytes and in the liver of patients with liver fibrosis, and that higher TINAGL1 expression persists in HCV-eradicated hepatocytes after treatment with DAAs.

View Article and Find Full Text PDF

Targeting p97/Valosin-Containing Protein Promotes Hepatic Stellate Cell Senescence and Mitigates Liver Fibrosis.

DNA Cell Biol

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.

Liver fibrosis, one of the main histological determinants of various chronic liver diseases, currently lacks effective treatment. Hepatic stellate cells (HSCs) are pivotal in the production of extracellular matrix and amplify the fibrogenic response. Inhibiting the activation of HSCs or promoting the senescence of activated HSCs is crucial for the regression of liver fibrosis.

View Article and Find Full Text PDF

Harnessing nature's arsenal: Targeting the TGF-β/Smad Cascade with novel natural anti-fibrotic agents.

Fitoterapia

January 2025

Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China. Electronic address:

Background: Hepatic fibrosis is a wound healing response that leads to excessive deposition of extracellular matrix (ECM) due to sustained liver injury. Hepatic stellate cells (HSCs) are key players in ECM synthesis, with the TGF-β/Smad signaling pathway being central to their activation. Despite advances in understanding the pathogenesis of hepatic fibrosis, effective anti-fibrotic therapies are still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!