Background & Aims: The Raf kinase inhibitor protein (RKIP) has been identified as a suppressor of the mitogen-activated protein kinase (MAPK) pathway. Loss of RKIP function promotes tumor metastasis in prostate cancer and melanoma. The insulin-like growth factor I (IGF-I)-mediated MAPK cascade is often activated in hepatocellular carcinoma (HCC), but the role of RKIP in the molecular pathogenesis of these tumors is unknown. This study was performed to evaluate the role of RKIP in the development of HCC.
Methods: The levels of RKIP expression in HCC tumor and corresponding peritumoral tissues were determined by immunohistochemistry and Western blot analysis. The underlying mechanisms of RKIP were assessed with immunoblot analysis, Raf kinase activity assay, cell proliferation, and migration assays after either overexpression or knockdown of RKIP expression in HCC cell lines.
Results: RKIP expression is down-regulated in human HCC compared with adjacent peritumoral tissues. Low RKIP levels were correlated with enhanced extracellular signal-regulated-kinase (ERK)/MAPK pathway activation. Reconstitution experiments antagonized IGF-I-mediated MAPK pathway activation, resulting in reduced nuclear accumulation of phospho-ERK. In contrast, knockdown of RKIP expression using small interfering RNA induced activation of the ERK/MAPK pathway. Ectopic expression of RKIP altered HCC cell proliferation and migration.
Conclusions: Our findings indicate that down-regulation of RKIP expression is a major factor in activation of the IGF-I/ERK/MAPK pathway during human hepatocarcinogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593881 | PMC |
http://dx.doi.org/10.1053/j.gastro.2006.07.012 | DOI Listing |
Pharmacol Res
December 2024
Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany. Electronic address:
Neuro Oncol
December 2024
Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.
View Article and Find Full Text PDFBr J Pharmacol
December 2024
Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
Background And Purpose: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert cardiovascular benefits in diabetic patients, but the underlying mechanisms remain incompletely understood. Semaglutide, a novel long-acting GLP-1RA, has shown a reduced risk of cardiovascular events. Based on these results, we investigated the therapeutic potential of semaglutide in diabetic cardiomyopathy and sought to elucidate the underlying mechanisms.
View Article and Find Full Text PDFPlant J
November 2024
Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands.
Genes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom.
View Article and Find Full Text PDFCancers (Basel)
September 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!