Pressurized liquid extraction with water as a tool for chemical and toxicological screening of soil samples at army live-fire training ranges.

J Hazard Mater

Department of Threat Assessment, Division of NBC-Defence, Swedish Defence Research Agency, FOI, SE-90182 Umeå, Sweden.

Published: April 2007

Significant discrepancies in the results of risk assessments based on chemical and toxicity analyses of soils may arise through differences in the efficiency of the extraction or leaching methods used. A rapid technique that may be used in the screening phase of live-fire training ranges and suitable for extracting explosive residues is pressurized liquid extraction (PLE) with water. Therefore, PLE and the commonly used batch leaching method EN-124 57-2 were compared for their utility to extract specific residues from soil samples collected from the Canadian Forces Base (CFB) Petawawa, Ontario. After extraction the cytotoxicity of the samples were assessed in the L-929 growth inhibition assay. The PLE method yielded extracts suitable for direct use in the toxicity assay within 20 min as compared to 24h for the batch leaching method. Analysis of the extracts showed that the PLE water extracts tended to give higher recoveries of explosive residues and the resulting exposure concentrations were confirmed by higher cytotoxicities. Furthermore, gas chromatography-mass spectrometry analyses showed that the samples contained significant amounts of several munition-related stabilizers and plasticizers of toxicological significance in addition to the analysed explosive residues. In conclusion, PLE using water is a promising extraction technique for both chemical and toxicological screening of soil samples from areas that may be contaminated with explosive residues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2006.08.043DOI Listing

Publication Analysis

Top Keywords

explosive residues
16
soil samples
12
ple water
12
pressurized liquid
8
liquid extraction
8
chemical toxicological
8
toxicological screening
8
screening soil
8
live-fire training
8
training ranges
8

Similar Publications

Xylooligosaccharides: A comprehensive review of production, purification, characterization, and quantification.

Food Res Int

February 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China. Electronic address:

Xylooligosaccharides (XOS), short-chain polymers with prebiotic properties, have gained significant commercial attention over the past few decades due to their potential as nutraceutical components. Derived from lignocellulosic biomass (LCB), XOS serve as health promoting compounds with applications across multiple sectors, including food pharmaceutical and cosmetic. This comprehensive review provides an overview of XOS production, purification, characterization, and quantification, highlighting their derivation from various sources such as agricultural waste, agro-economical forest residues, and nutrient-dense energy crops.

View Article and Find Full Text PDF

Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.

View Article and Find Full Text PDF

MEDOC: A Fast, Scalable, and Mathematically Exact Algorithm for the Site-Specific Prediction of the Protonation Degree in Large Disordered Proteins.

J Chem Inf Model

January 2025

Max-Planck-Institut für Immunbiologie und Epigenetik (MPI-IE), Stübeweg 51, 79108 Freiburg im Breisgau, Germany.

Intrinsically disordered regions are found in most eukaryotic proteins and are enriched with positively and negatively charged residues. While it is often convenient to assume that these residues follow their model-compound p values, recent work has shown that local charge effects (charge regulation) can upshift or downshift side chain p values with major consequences for molecular function. Despite this, charge regulation is rarely considered when investigating disordered regions.

View Article and Find Full Text PDF

Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided.

View Article and Find Full Text PDF

Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!