This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2006.08.012 | DOI Listing |
ISME J
January 2025
Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, 18119 Germany.
Dormancy is a wide-spread key life history trait observed across the tree of life. Many plankton species form dormant cells stages that accumulate in aquatic sediments and under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Physics Department "E. Pancini", University Federico II, via Cintia, 80126 Napoli, Italy; CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", via Campi Flegrei 34, 80078 Pozzuoli, Italy. Electronic address:
The increasing release of toxic heavy metals into marine environments poses significant risks due to their persistence and bioaccumulation. Diatoms are ideal bioindicators because of their sensitivity to environmental changes. Despite traditional methods for detecting these persistent pollutants effectively identify composition and concentration, they are time-consuming, they often require the use of harmful reagents, and do not allow a fast assessment of detrimental impacts on marine organisms.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China.
Studies have demonstrated that marine phytoplankton can adapt to the warmer environment. However, the underlying mechanisms remain largely unknown. Here, we quantified the capacity of a globally distributed marine diatom Skeletonema dohrnii, for rapid evolution under the moderate (24°C) and severe (28°C) warming scenarios.
View Article and Find Full Text PDFMar Environ Res
November 2024
Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China. Electronic address:
By using Skeletonema dohrnii as the experimental algal species, we investigated how silicate concentration impacts the polyamine metabolism of diatoms in our experiment. Three different silicate concentrations were set for cultivation, and Skeletonema dohrnii at the exponential growth phase was selected to analyze basic physiological parameters, polyamine content, and Polyamine oxidase (PAO) gene expression under varying silicate concentrations. Results showed that low silicate concentrations led to reduced growth rate and polyamine content, with down-regulation of PAO gene expression.
View Article and Find Full Text PDFLeg Med (Tokyo)
November 2024
Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan; Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18, Otsuka, Bunkyo-Ku, Tokyo 112-0012, Japan.
The diatom test is one of the methods used to diagnose drowning in forensic autopsies. Metagenomic diatom analysis may reveal where a drowning occurred. We evaluated whether metagenomic diatom analysis could be used to infer waters, watersheds, and geographic locations using 166 water samples from 64 locations (freshwater: 55; seawater: 9).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!